IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v329y2018icp143-153.html
   My bibliography  Save this article

Carathéodory approximations and stability of solutions to non-Lipschitz stochastic fractional differential equations of Itô-Doob type

Author

Listed:
  • Abouagwa, Mahmoud
  • Liu, Jicheng
  • Li, Ji

Abstract

The existence and uniqueness theorem of solutions provides an effective tool for the model validation of both deterministic and stochastic equations. The objective of this paper is to establish the existence and uniqueness of solutions for a class of Itô-Doob stochastic fractional differential equations under non-Lipschitz condition which is weaker than Lipschitz one and contains it as a special case. The solution is constructed with the aid of Carathéodory approximation. Moreover, the continuous dependence of solutions on the initial value is investigated in view of the stability of solutions in the sense of mean square. Finally, an example is given to illustrate the theory.

Suggested Citation

  • Abouagwa, Mahmoud & Liu, Jicheng & Li, Ji, 2018. "Carathéodory approximations and stability of solutions to non-Lipschitz stochastic fractional differential equations of Itô-Doob type," Applied Mathematics and Computation, Elsevier, vol. 329(C), pages 143-153.
  • Handle: RePEc:eee:apmaco:v:329:y:2018:i:c:p:143-153
    DOI: 10.1016/j.amc.2018.02.005
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300318300997
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2018.02.005?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Xu, Yong & Pei, Bin & Guo, Guobin, 2015. "Existence and stability of solutions to non-Lipschitz stochastic differential equations driven by Lévy noise," Applied Mathematics and Computation, Elsevier, vol. 263(C), pages 398-409.
    2. Pedjeu, Jean-C. & Ladde, Gangaram S., 2012. "Stochastic fractional differential equations: Modeling, method and analysis," Chaos, Solitons & Fractals, Elsevier, vol. 45(3), pages 279-293.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Abdellatif Ben Makhlouf & Lassaad Mchiri & Hakeem A. Othman & Hafedh M. S. Rguigui & Salah Boulaaras, 2023. "Proportional Itô–Doob Stochastic Fractional Order Systems," Mathematics, MDPI, vol. 11(9), pages 1-14, April.
    2. Kahouli, Omar & Ben Makhlouf, Abdellatif & Mchiri, Lassaad & Rguigui, Hafedh, 2023. "Hyers–Ulam stability for a class of Hadamard fractional Itô–Doob stochastic integral equations," Chaos, Solitons & Fractals, Elsevier, vol. 166(C).
    3. Luo, Danfeng & Tian, Mengquan & Zhu, Quanxin, 2022. "Some results on finite-time stability of stochastic fractional-order delay differential equations," Chaos, Solitons & Fractals, Elsevier, vol. 158(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fu, Xiaozheng & Zhu, Quanxin & Guo, Yingxin, 2019. "Stabilization of stochastic functional differential systems with delayed impulses," Applied Mathematics and Computation, Elsevier, vol. 346(C), pages 776-789.
    2. Xu, Yan & He, Zhimin & Wang, Peiguang, 2015. "pth moment asymptotic stability for neutral stochastic functional differential equations with Lévy processes," Applied Mathematics and Computation, Elsevier, vol. 269(C), pages 594-605.
    3. Song, Bo & Zhang, Ya & Park, Ju H., 2021. "H∞ control for Poisson-driven stochastic systems," Applied Mathematics and Computation, Elsevier, vol. 392(C).
    4. Abdelhamid Mohammed Djaouti & Zareen A. Khan & Muhammad Imran Liaqat & Ashraf Al-Quran, 2024. "Existence, Uniqueness, and Averaging Principle of Fractional Neutral Stochastic Differential Equations in the L p Space with the Framework of the Ψ-Caputo Derivative," Mathematics, MDPI, vol. 12(7), pages 1-21, March.
    5. Hendy, Ahmed S. & Zaky, Mahmoud A. & Suragan, Durvudkhan, 2022. "Discrete fractional stochastic Grönwall inequalities arising in the numerical analysis of multi-term fractional order stochastic differential equations," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 193(C), pages 269-279.
    6. Abdellatif Ben Makhlouf & Lassaad Mchiri & Hakeem A. Othman & Hafedh M. S. Rguigui & Salah Boulaaras, 2023. "Proportional Itô–Doob Stochastic Fractional Order Systems," Mathematics, MDPI, vol. 11(9), pages 1-14, April.
    7. Ahmadova, Arzu & Mahmudov, Nazim I., 2021. "Strong convergence of a Euler–Maruyama method for fractional stochastic Langevin equations," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 190(C), pages 429-448.
    8. Zakaria Ali & Minyahil Abera Abebe & Talat Nazir, 2024. "Strong Convergence of Euler-Type Methods for Nonlinear Fractional Stochastic Differential Equations without Singular Kernel," Mathematics, MDPI, vol. 12(18), pages 1-36, September.
    9. Yang, Zhiwei & Zheng, Xiangcheng & Zhang, Zhongqiang & Wang, Hong, 2021. "Strong convergence of a Euler-Maruyama scheme to a variable-order fractional stochastic differential equation driven by a multiplicative white noise," Chaos, Solitons & Fractals, Elsevier, vol. 142(C).
    10. Kahouli, Omar & Ben Makhlouf, Abdellatif & Mchiri, Lassaad & Rguigui, Hafedh, 2023. "Hyers–Ulam stability for a class of Hadamard fractional Itô–Doob stochastic integral equations," Chaos, Solitons & Fractals, Elsevier, vol. 166(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:329:y:2018:i:c:p:143-153. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.