Existence, uniqueness and almost surely asymptotic estimations of the solutions to neutral stochastic functional differential equations driven by pure jumps
Author
Abstract
Suggested Citation
DOI: 10.1016/j.amc.2014.12.126
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Mao, Xuerong, 1996. "Razumikhin-type theorems on exponential stability of stochastic functional differential equations," Stochastic Processes and their Applications, Elsevier, vol. 65(2), pages 233-250, December.
- Küchler, Uwe & Platen, Eckhard, 2000.
"Strong discrete time approximation of stochastic differential equations with time delay,"
Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 54(1), pages 189-205.
- Küchler, U. & Platen, E., 1999. "Strong discrete time approximation of Stochastic Differential Equations with Time Delay," SFB 373 Discussion Papers 1999,25, Humboldt University of Berlin, Interdisciplinary Research Project 373: Quantification and Simulation of Economic Processes.
- Uwe Kuchler & Eckhard Platen, 2000. "Strong Discrete Time Approximation of Stochastic Differential Equations with Time Delay," Research Paper Series 44, Quantitative Finance Research Centre, University of Technology, Sydney.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Xu, Yan & He, Zhimin & Wang, Peiguang, 2015. "pth moment asymptotic stability for neutral stochastic functional differential equations with Lévy processes," Applied Mathematics and Computation, Elsevier, vol. 269(C), pages 594-605.
- Abdelhamid Mohammed Djaouti & Zareen A. Khan & Muhammad Imran Liaqat & Ashraf Al-Quran, 2024. "Existence, Uniqueness, and Averaging Principle of Fractional Neutral Stochastic Differential Equations in the L p Space with the Framework of the Ψ-Caputo Derivative," Mathematics, MDPI, vol. 12(7), pages 1-21, March.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Mao, Wei & Hu, Liangjian & Mao, Xuerong, 2015. "The existence and asymptotic estimations of solutions to stochastic pantograph equations with diffusion and Lévy jumps," Applied Mathematics and Computation, Elsevier, vol. 268(C), pages 883-896.
- Uwe Küchler & Michael Sørensen, 2010. "A simple estimator for discrete-time samples from affine stochastic delay differential equations," Statistical Inference for Stochastic Processes, Springer, vol. 13(2), pages 125-132, June.
- Zhou, Jianping & Park, Ju H. & Ma, Qian, 2016. "Non-fragile observer-based H∞ control for stochastic time-delay systems," Applied Mathematics and Computation, Elsevier, vol. 291(C), pages 69-83.
- Peng, Dongxue & Li, Xiaodi & Rakkiyappan, R. & Ding, Yanhui, 2021. "Stabilization of stochastic delayed systems: Event-triggered impulsive control," Applied Mathematics and Computation, Elsevier, vol. 401(C).
- Küchler, Uwe & Platen, Eckhard, 2002.
"Weak discrete time approximation of stochastic differential equations with time delay,"
Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 59(6), pages 497-507.
- Uwe Kuchler & Eckhard Platen, 2001. "Weak Discrete Time Approximation of Stochastic Differential Equations with Time Delay," Research Paper Series 50, Quantitative Finance Research Centre, University of Technology, Sydney.
- Küchler, Uwe & Platen, Eckhard, 2001. "Weak discrete time approximation of stochastic differential equations with time delay," SFB 373 Discussion Papers 2001,30, Humboldt University of Berlin, Interdisciplinary Research Project 373: Quantification and Simulation of Economic Processes.
- Yuan, Chenggui & Mao, Xuerong, 2004. "Convergence of the Euler–Maruyama method for stochastic differential equations with Markovian switching," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 64(2), pages 223-235.
- Kao, Yonggui & Zhu, Quanxin & Qi, Wenhai, 2015. "Exponential stability and instability of impulsive stochastic functional differential equations with Markovian switching," Applied Mathematics and Computation, Elsevier, vol. 271(C), pages 795-804.
- Qi Wang & Huabin Chen & Chenggui Yuan, 2022. "A Note on Exponential Stability for Numerical Solution of Neutral Stochastic Functional Differential Equations," Mathematics, MDPI, vol. 10(6), pages 1-11, March.
- Li, Dingshi & Lin, Yusen, 2021. "Periodic measures of impulsive stochastic differential equations," Chaos, Solitons & Fractals, Elsevier, vol. 148(C).
- Hu, Rong, 2020. "Almost sure exponential stability of the Milstein-type schemes for stochastic delay differential equations," Chaos, Solitons & Fractals, Elsevier, vol. 131(C).
- Marco Ferrante & Elisabetta Ferraris & Carles Rovira, 2016. "On a stochastic epidemic SEIHR model and its diffusion approximation," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 25(3), pages 482-502, September.
- Eckhard Platen, 2020. "Stochastic Modelling of the COVID-19 Epidemic," Research Paper Series 409, Quantitative Finance Research Centre, University of Technology, Sydney.
- Lijun Pan & Jinde Cao & Yong Ren, 2020. "Impulsive Stability of Stochastic Functional Differential Systems Driven by G-Brownian Motion," Mathematics, MDPI, vol. 8(2), pages 1-16, February.
- Natalya O. Sedova & Olga V. Druzhinina, 2023. "Exponential Stability of Nonlinear Time-Varying Delay Differential Equations via Lyapunov–Razumikhin Technique," Mathematics, MDPI, vol. 11(4), pages 1-15, February.
- Udom, Akaninyene Udo, 2012. "Exponential stabilization of stochastic interval system with time dependent parameters," European Journal of Operational Research, Elsevier, vol. 222(3), pages 523-528.
- Mahmoudi, Fatemeh & Tahmasebi, Mahdieh, 2022. "The convergence of a numerical scheme for additive fractional stochastic delay equations with H>12," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 191(C), pages 219-231.
- Wang, Zhen & Li, Xiong & Lei, Jinzhi, 2014. "Moment boundedness of linear stochastic delay differential equations with distributed delay," Stochastic Processes and their Applications, Elsevier, vol. 124(1), pages 586-612.
- Becker, Christoph & Schmidt, Wolfgang M., 2013. "Stressing correlations and volatilities — A consistent modeling approach," Journal of Empirical Finance, Elsevier, vol. 21(C), pages 174-194.
- Uwe Küchler & Eckhard Platen, 2007. "Time Delay and Noise Explaining Cyclical Fluctuations in Prices of Commodities," Research Paper Series 195, Quantitative Finance Research Centre, University of Technology, Sydney.
- Xiaopeng Xi & Donghua Zhou, 2022. "Prognostics of fractional degradation processes with state-dependent delay," Journal of Risk and Reliability, , vol. 236(1), pages 114-124, February.
More about this item
Keywords
Neutral stochastic functional differential equations; Pure jumps; Existence and uniqueness; Exponential estimations; Almost surely asymptotic estimations;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:254:y:2015:i:c:p:252-265. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.