IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v346y2019icp109-126.html
   My bibliography  Save this article

The partially truncated Euler–Maruyama method for nonlinear pantograph stochastic differential equations

Author

Listed:
  • Zhan, Weijun
  • Gao, Yan
  • Guo, Qian
  • Yao, Xiaofeng

Abstract

This paper develops the partially truncated Euler–Maruyama method for a class of highly nonlinear pantograph stochastic differential equations under the generalized Khasminskii-type conditions. The order of Lp-convergence is obtained. Moreover, some almost sure polynomial stability and mean square polynomial stability criteria are established for the numerical solution. Numerical examples are provided to illustrate the theoretical results.

Suggested Citation

  • Zhan, Weijun & Gao, Yan & Guo, Qian & Yao, Xiaofeng, 2019. "The partially truncated Euler–Maruyama method for nonlinear pantograph stochastic differential equations," Applied Mathematics and Computation, Elsevier, vol. 346(C), pages 109-126.
  • Handle: RePEc:eee:apmaco:v:346:y:2019:i:c:p:109-126
    DOI: 10.1016/j.amc.2018.10.052
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300318309184
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2018.10.052?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. You, Surong & Mao, Wei & Mao, Xuerong & Hu, Liangjian, 2015. "Analysis on exponential stability of hybrid pantograph stochastic differential equations with highly nonlinear coefficients," Applied Mathematics and Computation, Elsevier, vol. 263(C), pages 73-83.
    2. Zhou, Shaobo & Hu, Yangzi, 2016. "Numerical approximation for nonlinear stochastic pantograph equations with Markovian switching," Applied Mathematics and Computation, Elsevier, vol. 286(C), pages 126-138.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wu, Hao & Hu, Junhao & Yuan, Chenggui, 2022. "Stability of numerical solution to pantograph stochastic functional differential equations," Applied Mathematics and Computation, Elsevier, vol. 431(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Bing, 2017. "A note on stability of hybrid stochastic differential equations," Applied Mathematics and Computation, Elsevier, vol. 299(C), pages 45-57.
    2. Ruan, Dehao & Xu, Liping & Luo, Jiaowan, 2019. "Stability of hybrid stochastic functional differential equations," Applied Mathematics and Computation, Elsevier, vol. 346(C), pages 832-841.
    3. Yu, Peilin & Deng, Feiqi & Sun, Yuanyuan & Wan, Fangzhe, 2022. "Stability analysis of impulsive stochastic delayed Cohen-Grossberg neural networks driven by Lévy noise," Applied Mathematics and Computation, Elsevier, vol. 434(C).
    4. Jiang, Yan & Zhai, Junyong, 2019. "Observer-based stabilization of sector-bounded nonlinear stochastic systems in the presence of intermittent measurements," Applied Mathematics and Computation, Elsevier, vol. 346(C), pages 740-752.
    5. Xu, Yan & He, Zhimin & Wang, Peiguang, 2015. "pth moment asymptotic stability for neutral stochastic functional differential equations with Lévy processes," Applied Mathematics and Computation, Elsevier, vol. 269(C), pages 594-605.
    6. Zhang, Tian & Chen, Huabin, 2019. "The stability with a general decay of stochastic delay differential equations with Markovian switching," Applied Mathematics and Computation, Elsevier, vol. 359(C), pages 294-307.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:346:y:2019:i:c:p:109-126. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.