IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v430y2022ics0096300322003873.html
   My bibliography  Save this article

Discrete-time control for highly nonlinear neutral stochastic delay systems

Author

Listed:
  • Song, Gongfei
  • Zhang, Zimeng
  • Zhu, Yanan
  • Li, Tao

Abstract

This work explores the discrete-time state feedback control problem for neutral stochastic delay systems(NSDSs) in which coefficients satisfy highly nonlinear. Due to the highly nonlinear, the neutral term and discrete time observation value, many conventional methods are not applicable. A more general Lyapunov function is constructed to prove that the designed controller can stabilize the corresponding systems. In addition, H∞-stable, asymptotically stable and exponentially stable of the corresponding studied systems are presented. Then, a numerical case is demonstrated to verify the correctness and validity of the proposed theoretical results.

Suggested Citation

  • Song, Gongfei & Zhang, Zimeng & Zhu, Yanan & Li, Tao, 2022. "Discrete-time control for highly nonlinear neutral stochastic delay systems," Applied Mathematics and Computation, Elsevier, vol. 430(C).
  • Handle: RePEc:eee:apmaco:v:430:y:2022:i:c:s0096300322003873
    DOI: 10.1016/j.amc.2022.127313
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300322003873
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2022.127313?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Qiu, Qinwei & Liu, Wei & Hu, Liangjian & Mao, Xuerong & You, Surong, 2016. "Stabilization of stochastic differential equations with Markovian switching by feedback control based on discrete-time state observation with a time delay," Statistics & Probability Letters, Elsevier, vol. 115(C), pages 16-26.
    2. Zhuang, Guangming & Xu, Shengyuan & Xia, Jianwei & Ma, Qian & Zhang, Zhengqiang, 2019. "Non-fragile delay feedback control for neutral stochastic Markovian jump systems with time-varying delays," Applied Mathematics and Computation, Elsevier, vol. 355(C), pages 21-32.
    3. Feng, Lichao & Liu, Lei & Wu, Zhihui & Liu, Qiumei, 2021. "Stability analysis for nonlinear Markov jump neutral stochastic functional differential systems," Applied Mathematics and Computation, Elsevier, vol. 394(C).
    4. Mao, Xuerong & Shen, Yi & Yuan, Chenggui, 2008. "Almost surely asymptotic stability of neutral stochastic differential delay equations with Markovian switching," Stochastic Processes and their Applications, Elsevier, vol. 118(8), pages 1385-1406, August.
    5. Mao, Xuerong, 1999. "Stability of stochastic differential equations with Markovian switching," Stochastic Processes and their Applications, Elsevier, vol. 79(1), pages 45-67, January.
    6. You, Surong & Hu, Liangjian & Mao, Wei & Mao, Xuerong, 2015. "Robustly exponential stabilization of hybrid uncertain systems by feedback controls based on discrete-time observations," Statistics & Probability Letters, Elsevier, vol. 102(C), pages 8-16.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Tian & Chen, Huabin, 2019. "The stability with a general decay of stochastic delay differential equations with Markovian switching," Applied Mathematics and Computation, Elsevier, vol. 359(C), pages 294-307.
    2. Li, Yuyuan & Lu, Jianqiu & Kou, Chunhai & Mao, Xuerong & Pan, Jiafeng, 2018. "Robust discrete-state-feedback stabilization of hybrid stochastic systems with time-varying delay based on Razumikhin technique," Statistics & Probability Letters, Elsevier, vol. 139(C), pages 152-161.
    3. Luo, Tianjiao, 2019. "Stabilization of multi-group models with multiple dispersal and stochastic perturbation via feedback control based on discrete-time state observations," Applied Mathematics and Computation, Elsevier, vol. 354(C), pages 396-410.
    4. Liu, Jiamin & Li, Zhao-Yan & Deng, Feiqi, 2021. "Asymptotic behavior analysis of Markovian switching neutral-type stochastic time-delay systems," Applied Mathematics and Computation, Elsevier, vol. 404(C).
    5. Li, Jin & Guo, Ying & Liu, Xiaotong & Zhang, Yifan, 2024. "Stabilization of highly nonlinear stochastic coupled systems with Markovian switching under discrete-time state observations control," Chaos, Solitons & Fractals, Elsevier, vol. 178(C).
    6. Wu, Fuke & Hu, Shigeng, 2011. "Khasminskii-type theorems for stochastic functional differential equations with infinite delay," Statistics & Probability Letters, Elsevier, vol. 81(11), pages 1690-1694, November.
    7. E. K. Boukas, 2004. "Nonfragile Controller Design for Linear Markovian Jumping Parameters Systems," Journal of Optimization Theory and Applications, Springer, vol. 122(2), pages 241-255, August.
    8. Mao, Xuerong & Shen, Yi & Yuan, Chenggui, 2008. "Almost surely asymptotic stability of neutral stochastic differential delay equations with Markovian switching," Stochastic Processes and their Applications, Elsevier, vol. 118(8), pages 1385-1406, August.
    9. Xi, Fubao, 2004. "Stability of a random diffusion with nonlinear drift," Statistics & Probability Letters, Elsevier, vol. 68(3), pages 273-286, July.
    10. Yuan, Chenggui & Mao, Xuerong, 2004. "Convergence of the Euler–Maruyama method for stochastic differential equations with Markovian switching," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 64(2), pages 223-235.
    11. Xu, Jiang & Chen, Tao & Wen, Xiangdan, 2021. "Analysis of a Bailey–Dietz model for vector-borne disease under regime switching," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 580(C).
    12. Zhou, Qi & Yao, Deyin & Wang, Jiahui & Wu, Chengwei, 2016. "Robust control of uncertain semi-Markovian jump systems using sliding mode control method," Applied Mathematics and Computation, Elsevier, vol. 286(C), pages 72-87.
    13. Ye, Zhiyong & Zhang, He & Zhang, Hongyu & Zhang, Hua & Lu, Guichen, 2015. "Mean square stabilization and mean square exponential stabilization of stochastic BAM neural networks with Markovian jumping parameters," Chaos, Solitons & Fractals, Elsevier, vol. 73(C), pages 156-165.
    14. Ma, Yuechao & Chen, Hui, 2015. "Reliable finite-time H∞ filtering for discrete time-delay systems with Markovian jump and randomly occurring nonlinearities," Applied Mathematics and Computation, Elsevier, vol. 268(C), pages 897-915.
    15. Weimin Chen & Qian Ma & Lanning Wang & Huiling Xu, 2018. "Stabilisation and control of neutral stochastic delay Markovian jump systems," International Journal of Systems Science, Taylor & Francis Journals, vol. 49(1), pages 58-67, January.
    16. Luo, Jiaowan & Liu, Kai, 2008. "Stability of infinite dimensional stochastic evolution equations with memory and Markovian jumps," Stochastic Processes and their Applications, Elsevier, vol. 118(5), pages 864-895, May.
    17. Wu, Yongbao & Guo, Haihua & Li, Wenxue, 2020. "Finite-time stabilization of stochastic coupled systems on networks with Markovian switching via feedback control," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 537(C).
    18. Dai, Mingcheng & Huang, Zhengguo & Xia, Jianwei & Meng, Bo & Wang, Jian & Shen, Hao, 2019. "Non-fragile extended dissipativity-based state feedback control for 2-D Markov jump delayed systems," Applied Mathematics and Computation, Elsevier, vol. 362(C), pages 1-1.
    19. Xu, Yan & He, Zhimin & Wang, Peiguang, 2015. "pth moment asymptotic stability for neutral stochastic functional differential equations with Lévy processes," Applied Mathematics and Computation, Elsevier, vol. 269(C), pages 594-605.
    20. Wan, Fangzhe & Hu, Po & Chen, Huabin, 2020. "Stability analysis of neutral stochastic differential delay equations driven by Lévy noises," Applied Mathematics and Computation, Elsevier, vol. 375(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:430:y:2022:i:c:s0096300322003873. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.