IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v299y2017icp45-57.html
   My bibliography  Save this article

A note on stability of hybrid stochastic differential equations

Author

Listed:
  • Li, Bing

Abstract

In this paper, the pth moment stability of hybrid stochastic differential equations is investigated. Several new sufficient conditions are derived by constructing an auxiliary delayed differential equation and using the comparison principle. The proposed criteria remove some harsh restrictions imposed on the diffusion operators and improve some previous related works. Numerical examples and simulations are given to illustrate the effectiveness of theoretical results.

Suggested Citation

  • Li, Bing, 2017. "A note on stability of hybrid stochastic differential equations," Applied Mathematics and Computation, Elsevier, vol. 299(C), pages 45-57.
  • Handle: RePEc:eee:apmaco:v:299:y:2017:i:c:p:45-57
    DOI: 10.1016/j.amc.2016.11.034
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S009630031630710X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2016.11.034?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Xie, Jing & Kao, Yonggui & Wang, Changhong & Gao, Cunchen, 2015. "Delay-dependent robust stability of uncertain neutral-type Itoˆ stochastic systems with Markovian jumping parameters," Applied Mathematics and Computation, Elsevier, vol. 251(C), pages 576-585.
    2. Shen, Mouquan & Yan, Shen & Zhang, Guangming & Park, Ju H., 2016. "Finite-time H∞ static output control of Markov jump systems with an auxiliary approach," Applied Mathematics and Computation, Elsevier, vol. 273(C), pages 553-561.
    3. Kalpana, M. & Balasubramaniam, P. & Ratnavelu, K., 2015. "Direct delay decomposition approach to synchronization of chaotic fuzzy cellular neural networks with discrete, unbounded distributed delays and Markovian jumping parameters," Applied Mathematics and Computation, Elsevier, vol. 254(C), pages 291-304.
    4. Zhao, Huanyu & Park, Ju H. & Zhang, Yulin, 2014. "Couple-group consensus for second-order multi-agent systems with fixed and stochastic switching topologies," Applied Mathematics and Computation, Elsevier, vol. 232(C), pages 595-605.
    5. Mao, Xuerong, 1999. "Stability of stochastic differential equations with Markovian switching," Stochastic Processes and their Applications, Elsevier, vol. 79(1), pages 45-67, January.
    6. You, Surong & Mao, Wei & Mao, Xuerong & Hu, Liangjian, 2015. "Analysis on exponential stability of hybrid pantograph stochastic differential equations with highly nonlinear coefficients," Applied Mathematics and Computation, Elsevier, vol. 263(C), pages 73-83.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Li, Yuyuan & Lu, Jianqiu & Kou, Chunhai & Mao, Xuerong & Pan, Jiafeng, 2018. "Robust discrete-state-feedback stabilization of hybrid stochastic systems with time-varying delay based on Razumikhin technique," Statistics & Probability Letters, Elsevier, vol. 139(C), pages 152-161.
    2. Zhang, Tian & Chen, Huabin, 2019. "The stability with a general decay of stochastic delay differential equations with Markovian switching," Applied Mathematics and Computation, Elsevier, vol. 359(C), pages 294-307.
    3. Ruan, Dehao & Xu, Liping & Luo, Jiaowan, 2019. "Stability of hybrid stochastic functional differential equations," Applied Mathematics and Computation, Elsevier, vol. 346(C), pages 832-841.
    4. Feng, Lichao & Liu, Qiumei & Cao, Jinde & Zhang, Chunyan & Alsaadi, Fawaz, 2022. "Stabilization in general decay rate of discrete feedback control for non-autonomous Markov jump stochastic systems," Applied Mathematics and Computation, Elsevier, vol. 417(C).
    5. Fu, Xiaozheng & Zhu, Quanxin & Guo, Yingxin, 2019. "Stabilization of stochastic functional differential systems with delayed impulses," Applied Mathematics and Computation, Elsevier, vol. 346(C), pages 776-789.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ruan, Dehao & Xu, Liping & Luo, Jiaowan, 2019. "Stability of hybrid stochastic functional differential equations," Applied Mathematics and Computation, Elsevier, vol. 346(C), pages 832-841.
    2. Zhou, Jianping & Sang, Chengyan & Li, Xiao & Fang, Muyun & Wang, Zhen, 2018. "H∞ consensus for nonlinear stochastic multi-agent systems with time delay," Applied Mathematics and Computation, Elsevier, vol. 325(C), pages 41-58.
    3. E. K. Boukas, 2004. "Nonfragile Controller Design for Linear Markovian Jumping Parameters Systems," Journal of Optimization Theory and Applications, Springer, vol. 122(2), pages 241-255, August.
    4. Li, Yuyuan & Lu, Jianqiu & Kou, Chunhai & Mao, Xuerong & Pan, Jiafeng, 2018. "Robust discrete-state-feedback stabilization of hybrid stochastic systems with time-varying delay based on Razumikhin technique," Statistics & Probability Letters, Elsevier, vol. 139(C), pages 152-161.
    5. Ye, Dan & Yang, Xiang & Su, Lei, 2017. "Fault-tolerant synchronization control for complex dynamical networks with semi-Markov jump topology," Applied Mathematics and Computation, Elsevier, vol. 312(C), pages 36-48.
    6. Song, Gongfei & Zhang, Zimeng & Zhu, Yanan & Li, Tao, 2022. "Discrete-time control for highly nonlinear neutral stochastic delay systems," Applied Mathematics and Computation, Elsevier, vol. 430(C).
    7. Sakthivel, R. & Joby, Maya & Wang, Chao & Kaviarasan, B., 2018. "Finite-time fault-tolerant control of neutral systems against actuator saturation and nonlinear actuator faults," Applied Mathematics and Computation, Elsevier, vol. 332(C), pages 425-436.
    8. Mao, Xuerong & Shen, Yi & Yuan, Chenggui, 2008. "Almost surely asymptotic stability of neutral stochastic differential delay equations with Markovian switching," Stochastic Processes and their Applications, Elsevier, vol. 118(8), pages 1385-1406, August.
    9. Rathinasamy, Anandaraman & Nair, Priya, 2018. "Asymptotic mean-square stability of weak second-order balanced stochastic Runge–Kutta methods for multi-dimensional Itô stochastic differential systems," Applied Mathematics and Computation, Elsevier, vol. 332(C), pages 276-303.
    10. Zhan, Weijun & Gao, Yan & Guo, Qian & Yao, Xiaofeng, 2019. "The partially truncated Euler–Maruyama method for nonlinear pantograph stochastic differential equations," Applied Mathematics and Computation, Elsevier, vol. 346(C), pages 109-126.
    11. Luo, Jinnan & Tian, Wenhong & Zhong, Shouming & Shi, Kaibo & Chen, Hao & Gu, Xian-Ming & Wang, Wenqin, 2017. "Non-fragile asynchronous H∞ control for uncertain stochastic memory systems with Bernoulli distribution," Applied Mathematics and Computation, Elsevier, vol. 312(C), pages 109-128.
    12. Xi, Fubao, 2004. "Stability of a random diffusion with nonlinear drift," Statistics & Probability Letters, Elsevier, vol. 68(3), pages 273-286, July.
    13. Liang, Kun & Dai, Mingcheng & Shen, Hao & Wang, Jing & Wang, Zhen & Chen, Bo, 2018. "L2−L∞ synchronization for singularly perturbed complex networks with semi-Markov jump topology," Applied Mathematics and Computation, Elsevier, vol. 321(C), pages 450-462.
    14. Yi, Chengbo & Feng, Jianwen & Wang, Jingyi & Xu, Chen & Zhao, Yi, 2017. "Synchronization of delayed neural networks with hybrid coupling via partial mixed pinning impulsive control," Applied Mathematics and Computation, Elsevier, vol. 312(C), pages 78-90.
    15. Guo, Beibei & Xiao, Yu, 2024. "Synchronization of multi-link and multi-delayed inertial neural networks with Markov jump via aperiodically intermittent adaptive control," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 219(C), pages 435-453.
    16. Liang, Tiantian & Shi, Shengli & Ma, Yuechao, 2023. "Asynchronous sliding mode control of continuous-time singular markov jump systems with time-varying delay under event-triggered strategy," Applied Mathematics and Computation, Elsevier, vol. 448(C).
    17. Yuan, Chenggui & Mao, Xuerong, 2004. "Convergence of the Euler–Maruyama method for stochastic differential equations with Markovian switching," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 64(2), pages 223-235.
    18. Li, Tao & Tang, Xiaoling & Qian, Wei & Fei, Shumin, 2019. "Hybrid-delay-dependent approach to synchronization in distributed delay neutral neural networks," Applied Mathematics and Computation, Elsevier, vol. 347(C), pages 449-463.
    19. Xu, Jiang & Chen, Tao & Wen, Xiangdan, 2021. "Analysis of a Bailey–Dietz model for vector-borne disease under regime switching," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 580(C).
    20. Ratnavelu, K. & Manikandan, M. & Balasubramaniam, P., 2015. "Synchronization of fuzzy bidirectional associative memory neural networks with various time delays," Applied Mathematics and Computation, Elsevier, vol. 270(C), pages 582-605.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:299:y:2017:i:c:p:45-57. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.