IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v475y2024ics0096300324002182.html
   My bibliography  Save this article

Stability of switched neutral stochastic functional systems with different structures under high nonlinearity

Author

Listed:
  • Lu, Boliang
  • Zhu, Quanxin

Abstract

This paper studies the stability of the hybrid neutral stochastic functional differential equations (NSFDEs) with different structures under highly nonlinear conditions. NSFDEs are of wide suitability for simulating random processes with memory, such as tumor evolution mechanism in life science field. The new stochastic system studied in this paper has completely different system structures in different switching subspaces, and the coefficients are highly nonlinear. Moreover, the neutral term is subject to the Markovian switching. This work fills the gap of the stability analysis for differently structured highly nonlinear neutral stochastic functional systems. By using the Lyapunov functional method and the generalized Khasminskii-type conditions, we first establish the existence and uniqueness theorem as well as the asymptotical bounded property of the unique global solution. Then the important stable properties are obtained including H∞ stability, asymptotic stability and exponential stability in Lp. Finally a numerical example is given to illustrate the effectiveness of the results.

Suggested Citation

  • Lu, Boliang & Zhu, Quanxin, 2024. "Stability of switched neutral stochastic functional systems with different structures under high nonlinearity," Applied Mathematics and Computation, Elsevier, vol. 475(C).
  • Handle: RePEc:eee:apmaco:v:475:y:2024:i:c:s0096300324002182
    DOI: 10.1016/j.amc.2024.128746
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300324002182
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2024.128746?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Cao, Wenping & Zhu, Quanxin, 2021. "Stability analysis of neutral stochastic delay differential equations via the vector Lyapunov function method," Applied Mathematics and Computation, Elsevier, vol. 405(C).
    2. Mao, Xuerong & Shen, Yi & Yuan, Chenggui, 2008. "Almost surely asymptotic stability of neutral stochastic differential delay equations with Markovian switching," Stochastic Processes and their Applications, Elsevier, vol. 118(8), pages 1385-1406, August.
    3. Mingli Xia & Linna Liu & Jianyin Fang & Yicheng Zhang, 2023. "Stability Analysis for a Class of Stochastic Differential Equations with Impulses," Mathematics, MDPI, vol. 11(6), pages 1-10, March.
    4. Wei Hu, 2018. "A New Stability Criterion for Neutral Stochastic Delay Differential Equations with Markovian Switching," Mathematical Problems in Engineering, Hindawi, vol. 2018, pages 1-8, October.
    5. Zhengqi Ma & Shoucheng Yuan & Kexin Meng & Shuli Mei, 2023. "Mean-Square Stability of Uncertain Delayed Stochastic Systems Driven by G-Brownian Motion," Mathematics, MDPI, vol. 11(10), pages 1-16, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liu, Zhiguang & Zhu, Quanxin, 2023. "Ultimate boundedness of impulsive stochastic delay differential equations with delayed impulses," Statistics & Probability Letters, Elsevier, vol. 199(C).
    2. Zhao Li & Chen Peng, 2023. "Dynamics and Embedded Solitons of Stochastic Quadratic and Cubic Nonlinear Susceptibilities with Multiplicative White Noise in the Itô Sense," Mathematics, MDPI, vol. 11(14), pages 1-11, July.
    3. Wu, Fuke & Hu, Shigeng, 2011. "Khasminskii-type theorems for stochastic functional differential equations with infinite delay," Statistics & Probability Letters, Elsevier, vol. 81(11), pages 1690-1694, November.
    4. Xia, Mingli & Liu, Linna & Fang, Jianyin & Qu, Boyang, 2024. "Exponentially weighted input-to-state stability of stochastic differential systems via event-triggered impulsive control," Chaos, Solitons & Fractals, Elsevier, vol. 182(C).
    5. Song, Gongfei & Zhang, Zimeng & Zhu, Yanan & Li, Tao, 2022. "Discrete-time control for highly nonlinear neutral stochastic delay systems," Applied Mathematics and Computation, Elsevier, vol. 430(C).
    6. Yinfang Song & Quan Yin & Yi Shen, 2015. "A note on attraction and stability of neutral stochastic delay differential equations with Markovian switching," International Journal of Systems Science, Taylor & Francis Journals, vol. 46(8), pages 1401-1410, June.
    7. Wenli Wang & Junyan Bao, 2024. "Existence Results for Nonlinear Impulsive System with Causal Operators," Mathematics, MDPI, vol. 12(17), pages 1-14, September.
    8. Liu, Jiamin & Li, Zhao-Yan & Deng, Feiqi, 2021. "Asymptotic behavior analysis of Markovian switching neutral-type stochastic time-delay systems," Applied Mathematics and Computation, Elsevier, vol. 404(C).
    9. Fawaz E. Alsaadi & Lichao Feng & Madini O. Alassafi & Reem M. Alotaibi & Adil M. Ahmad & Jinde Cao, 2022. "Stochastic Robustness of Delayed Discrete Noises for Delay Differential Equations," Mathematics, MDPI, vol. 10(5), pages 1-14, February.
    10. Chunsheng Wang & Xiangdong Liu & Feng Jiao & Hong Mai & Han Chen & Runpeng Lin, 2023. "Generalized Halanay Inequalities and Relative Application to Time-Delay Dynamical Systems," Mathematics, MDPI, vol. 11(8), pages 1-11, April.
    11. Weimin Chen & Qian Ma & Lanning Wang & Huiling Xu, 2018. "Stabilisation and control of neutral stochastic delay Markovian jump systems," International Journal of Systems Science, Taylor & Francis Journals, vol. 49(1), pages 58-67, January.
    12. Li, Jing & Zhu, Quanxin, 2023. "Event-triggered impulsive control of stochastic functional differential systems," Chaos, Solitons & Fractals, Elsevier, vol. 170(C).
    13. Yun Liu & Lifeng Guo & Xijuan Liu, 2023. "Dynamical Behaviors in a Stage-Structured Model with a Birth Pulse," Mathematics, MDPI, vol. 11(15), pages 1-13, July.
    14. Xu, Yan & He, Zhimin & Wang, Peiguang, 2015. "pth moment asymptotic stability for neutral stochastic functional differential equations with Lévy processes," Applied Mathematics and Computation, Elsevier, vol. 269(C), pages 594-605.
    15. Wan, Fangzhe & Hu, Po & Chen, Huabin, 2020. "Stability analysis of neutral stochastic differential delay equations driven by Lévy noises," Applied Mathematics and Computation, Elsevier, vol. 375(C).
    16. Vladislav V. Lyubimov, 2023. "A Method of Qualitative Analysis for Determining Monotonic Stability Regions of Particular Solutions of Differential Equations of Dynamic Systems," Mathematics, MDPI, vol. 11(14), pages 1-12, July.
    17. Zhang, Tian & Chen, Huabin, 2019. "The stability with a general decay of stochastic delay differential equations with Markovian switching," Applied Mathematics and Computation, Elsevier, vol. 359(C), pages 294-307.
    18. Manjitha Mani Shalini & Nazek Alessa & Banupriya Kandasamy & Karuppusamy Loganathan & Maheswari Rangasamy, 2023. "On ν -Level Interval of Fuzzy Set for Fractional Order Neutral Impulsive Stochastic Differential System," Mathematics, MDPI, vol. 11(9), pages 1-18, April.
    19. Bao, Jianhai & Hou, Zhenting & Yuan, Chenggui, 2009. "Stability in distribution of neutral stochastic differential delay equations with Markovian switching," Statistics & Probability Letters, Elsevier, vol. 79(15), pages 1663-1673, August.
    20. Yunfeng Li & Pei Cheng & Zheng Wu, 2022. "Exponential Stability of Impulsive Neutral Stochastic Functional Differential Equations," Mathematics, MDPI, vol. 10(21), pages 1-17, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:475:y:2024:i:c:s0096300324002182. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.