On asymptotic equicontinuity of Markov transition functions
Author
Abstract
Suggested Citation
DOI: 10.1016/j.spl.2012.10.033
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Yuan, Chenggui & Mao, Xuerong, 2003. "Asymptotic stability in distribution of stochastic differential equations with Markovian switching," Stochastic Processes and their Applications, Elsevier, vol. 103(2), pages 277-291, February.
- Lasserre, Jean B., 1997. "Invariant probabilities for Markov chains on a metric space," Statistics & Probability Letters, Elsevier, vol. 34(3), pages 259-265, June.
- Rosenblatt, M., 2006. "An example and transition function equicontinuity," Statistics & Probability Letters, Elsevier, vol. 76(18), pages 1961-1964, December.
- Bao, Jianhai & Hou, Zhenting & Yuan, Chenggui, 2009. "Stability in distribution of neutral stochastic differential delay equations with Markovian switching," Statistics & Probability Letters, Elsevier, vol. 79(15), pages 1663-1673, August.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Jaroszewska, Joanna, 2013. "A note on iterated function systems with discontinuous probabilities," Chaos, Solitons & Fractals, Elsevier, vol. 49(C), pages 28-31.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Li, Zhi & Zhang, Wei, 2017. "Stability in distribution of stochastic Volterra–Levin equations," Statistics & Probability Letters, Elsevier, vol. 122(C), pages 20-27.
- Tan, Li & Jin, Wei & Suo, Yongqiang, 2015. "Stability in distribution of neutral stochastic functional differential equations," Statistics & Probability Letters, Elsevier, vol. 107(C), pages 27-36.
- Tan, Li & Jin, Wei & Hou, Zhenting, 2013. "Weak convergence of functional stochastic differential equations with variable delays," Statistics & Probability Letters, Elsevier, vol. 83(11), pages 2592-2599.
- Tong, Jinying & Zhang, Zhenzhong & Bao, Jianhai, 2013. "The stationary distribution of the facultative population model with a degenerate noise," Statistics & Probability Letters, Elsevier, vol. 83(2), pages 655-664.
- Mao, Xuerong & Shen, Yi & Yuan, Chenggui, 2008. "Almost surely asymptotic stability of neutral stochastic differential delay equations with Markovian switching," Stochastic Processes and their Applications, Elsevier, vol. 118(8), pages 1385-1406, August.
- Khieu, Hoang & Wälde, Klaus, 2023.
"Capital income risk and the dynamics of the wealth distribution,"
Economic Modelling, Elsevier, vol. 122(C).
- Khieu, Hoang & Wälde, Klaus, 2018. "Capital Income Risk and the Dynamics of the Wealth Distribution," IZA Discussion Papers 11840, Institute of Labor Economics (IZA).
- Hoang Khieu & Klaus Wälde, 2018. "Capital Income Risk and the Dynamics of the Wealth Distribution," Working Papers 1814, Gutenberg School of Management and Economics, Johannes Gutenberg-Universität Mainz.
- Hoang Khieu & Klaus Wälde, 2019. "Capital Income Risk and the Dynamics of the Wealth Distribution," CESifo Working Paper Series 7970, CESifo.
- Chang, Zhengbo & Meng, Xinzhu & Lu, Xiao, 2017. "Analysis of a novel stochastic SIRS epidemic model with two different saturated incidence rates," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 472(C), pages 103-116.
- Wälde, Klaus & Bayer, Christian, 2011.
"Describing the Dynamics of Distribution in Search and Matching Models by Fokker-Planck Equations,"
VfS Annual Conference 2011 (Frankfurt, Main): The Order of the World Economy - Lessons from the Crisis
48736, Verein für Socialpolitik / German Economic Association.
- Christian Bayer & Klaus Waelde, 2011. "Describing the Dynamics of Distributions in Search and Matching Models by Fokker-Planck Equations," Working Papers 1110, Gutenberg School of Management and Economics, Johannes Gutenberg-Universität Mainz, revised 21 Jul 2011.
- Weimin Chen & Qian Ma & Lanning Wang & Huiling Xu, 2018. "Stabilisation and control of neutral stochastic delay Markovian jump systems," International Journal of Systems Science, Taylor & Francis Journals, vol. 49(1), pages 58-67, January.
- Liu, Lidan & Meng, Xinzhu & Zhang, Tonghua, 2017. "Optimal control strategy for an impulsive stochastic competition system with time delays and jumps," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 477(C), pages 99-113.
- Gao, Shuaibin & Li, Xiaotong & Liu, Zhuoqi, 2023. "Stationary distribution of the Milstein scheme for stochastic differential delay equations with first-order convergence," Applied Mathematics and Computation, Elsevier, vol. 458(C).
- Xu, Yan & He, Zhimin & Wang, Peiguang, 2015. "pth moment asymptotic stability for neutral stochastic functional differential equations with Lévy processes," Applied Mathematics and Computation, Elsevier, vol. 269(C), pages 594-605.
- Wan, Fangzhe & Hu, Po & Chen, Huabin, 2020. "Stability analysis of neutral stochastic differential delay equations driven by Lévy noises," Applied Mathematics and Computation, Elsevier, vol. 375(C).
- Zhang, Tian & Chen, Huabin, 2019. "The stability with a general decay of stochastic delay differential equations with Markovian switching," Applied Mathematics and Computation, Elsevier, vol. 359(C), pages 294-307.
- Costa, O. L. V. & Dufour, F., 2000. "Invariant probability measures for a class of Feller Markov chains," Statistics & Probability Letters, Elsevier, vol. 50(1), pages 13-21, October.
- Costa, O. L. V. & Dufour, F., 2001. "Necessary and sufficient conditions for non-singular invariant probability measures for Feller Markov chains," Statistics & Probability Letters, Elsevier, vol. 53(1), pages 47-57, May.
- Xi, Fubao & Yin, G., 2010. "Asymptotic properties of nonlinear autoregressive Markov processes with state-dependent switching," Journal of Multivariate Analysis, Elsevier, vol. 101(6), pages 1378-1389, July.
- Xi, Fubao, 2009. "Asymptotic properties of jump-diffusion processes with state-dependent switching," Stochastic Processes and their Applications, Elsevier, vol. 119(7), pages 2198-2221, July.
- Zhao, Yu & Yuan, Sanling, 2016. "Stability in distribution of a stochastic hybrid competitive Lotka–Volterra model with Lévy jumps," Chaos, Solitons & Fractals, Elsevier, vol. 85(C), pages 98-109.
- Leonardo Videla & Rolando Rebolledo, 2022. "Evolving Systems of Stochastic Differential Equations," Journal of Theoretical Probability, Springer, vol. 35(3), pages 1662-1705, September.
More about this item
Keywords
Markov operator; Asymptotic equicontinuity; Transition function; Invariant measure; Stability;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:83:y:2013:i:3:p:943-951. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.