IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v392y2013i8p1828-1839.html
   My bibliography  Save this article

A cell-based study on pedestrian acceleration and overtaking in a transfer station corridor

Author

Listed:
  • Ji, Xiangfeng
  • Zhou, Xuemei
  • Ran, Bin

Abstract

Pedestrian speed in a transfer station corridor is faster than usual and sometimes running can be found among some of them. In this paper, pedestrians are divided into two categories. The first one is aggressive, and the other is conservative. Aggressive pedestrians weaving their way through crowd in the corridor are the study object of this paper. During recent decades, much attention has been paid to the pedestrians’ behavior, such as overtaking (also deceleration) and collision avoidance, and that continues in this paper. After sufficiently analyzing the characteristics of pedestrian flow in transfer station corridor, a cell-based model is presented in this paper, including the acceleration (also deceleration) and overtaking analysis. Acceleration (also deceleration) in a corridor is fixed according to Newton’s Law and then speed calculated with a kinematic formula is discretized into cells based on the fuzzy logic. After the speed is updated, overtaking is analyzed based on updated speed and force explicitly, compared to rule-based models, which herein we call implicit ones. During the analysis of overtaking, a threshold value to determine the overtaking direction is introduced. Actually, model in this paper is a two-step one. The first step is to update speed, which is the cells the pedestrian can move in one time interval and the other is to analyze the overtaking. Finally, a comparison between the rule-based cellular automata, the model in this paper and data in HCM 2000 is made to demonstrate our model can be used to achieve reasonable simulation of acceleration (also deceleration) and overtaking among pedestrians.

Suggested Citation

  • Ji, Xiangfeng & Zhou, Xuemei & Ran, Bin, 2013. "A cell-based study on pedestrian acceleration and overtaking in a transfer station corridor," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(8), pages 1828-1839.
  • Handle: RePEc:eee:phsmap:v:392:y:2013:i:8:p:1828-1839
    DOI: 10.1016/j.physa.2012.12.016
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437112010825
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2012.12.016?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hughes, Roger L., 2002. "A continuum theory for the flow of pedestrians," Transportation Research Part B: Methodological, Elsevier, vol. 36(6), pages 507-535, July.
    2. Blue, Victor J. & Adler, Jeffrey L., 2001. "Cellular automata microsimulation for modeling bi-directional pedestrian walkways," Transportation Research Part B: Methodological, Elsevier, vol. 35(3), pages 293-312, March.
    3. Dirk Helbing & Lubos Buzna & Anders Johansson & Torsten Werner, 2005. "Self-Organized Pedestrian Crowd Dynamics: Experiments, Simulations, and Design Solutions," Transportation Science, INFORMS, vol. 39(1), pages 1-24, February.
    4. Antonini, Gianluca & Bierlaire, Michel & Weber, Mats, 2006. "Discrete choice models of pedestrian walking behavior," Transportation Research Part B: Methodological, Elsevier, vol. 40(8), pages 667-687, September.
    5. Ghatee, Mehdi & Hashemi, S. Mehdi, 2009. "Traffic assignment model with fuzzy level of travel demand: An efficient algorithm based on quasi-Logit formulas," European Journal of Operational Research, Elsevier, vol. 194(2), pages 432-451, April.
    6. Burstedde, C & Klauck, K & Schadschneider, A & Zittartz, J, 2001. "Simulation of pedestrian dynamics using a two-dimensional cellular automaton," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 295(3), pages 507-525.
    7. Hoogendoorn, S. P. & Bovy, P. H. L., 2004. "Pedestrian route-choice and activity scheduling theory and models," Transportation Research Part B: Methodological, Elsevier, vol. 38(2), pages 169-190, February.
    8. Tanimoto, Jun & Hagishima, Aya & Tanaka, Yasukaka, 2010. "Study of bottleneck effect at an emergency evacuation exit using cellular automata model, mean field approximation analysis, and game theory," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(24), pages 5611-5618.
    9. Miho Asano & Takamasa Iryo & Masao Kuwahara, 2009. "A Pedestrian Model Considering Anticipatory Behaviour for Capacity Evaluation," Springer Books, in: William H. K. Lam & S. C. Wong & Hong K. Lo (ed.), Transportation and Traffic Theory 2009: Golden Jubilee, chapter 0, pages 559-581, Springer.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Li, Yang & Chen, Maoyin & Zheng, Xiaoping & Dou, Zhan & Cheng, Yuan, 2020. "Relationship between behavior aggressiveness and pedestrian dynamics using behavior-based cellular automata model," Applied Mathematics and Computation, Elsevier, vol. 371(C).
    2. Tang, Tie-Qiao & Xie, Chuan-Zhi & Wang, Tao & Zhang, Jian, 2019. "Modeling and simulating the matching behavior of pedestrian flow at training school during the pickup period after class," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 521(C), pages 649-660.
    3. Fang, Shuyi & Jin, Cheng-Jie & Jiang, Rui & Li, Dawei, 2024. "Simulating the bi-directional pedestrian flow under high densities by a floor field cellular automaton model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 638(C).
    4. Kaji, Masaru & Inohara, Takehiro, 2017. "Cellular automaton simulation of unidirectional pedestrians flow in a corridor to reproduce the unique velocity profile of Hagen–Poiseuille flow," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 467(C), pages 85-95.
    5. Shang, Pan & Li, Ruimin & Guo, Jifu & Xian, Kai & Zhou, Xuesong, 2019. "Integrating Lagrangian and Eulerian observations for passenger flow state estimation in an urban rail transit network: A space-time-state hyper network-based assignment approach," Transportation Research Part B: Methodological, Elsevier, vol. 121(C), pages 135-167.
    6. Xie, Chuan-Zhi & Tang, Tie-Qiao & Hu, Peng-Cheng & Chen, Liang, 2022. "Observation and cellular-automaton based modeling of pedestrian behavior on an escalator," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 605(C).
    7. Ji, Xiangfeng & Zhang, Jian & Hu, Yongkai & Ran, Bin, 2016. "Pedestrian movement analysis in transfer station corridor: Velocity-based and acceleration-based," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 450(C), pages 416-434.
    8. Zhou, Xuemei & Hu, Jingjie & Ji, Xiangfeng & Xiao, Xiongziyan, 2019. "Cellular automaton simulation of pedestrian flow considering vision and multi-velocity," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 514(C), pages 982-992.
    9. Wu, Jie & Wang, Xiuling & Chen, Jinjin & Shu, Gang & Li, Ya, 2015. "The position of a door can significantly impact on pedestrians’ evacuation time in an emergency," Applied Mathematics and Computation, Elsevier, vol. 258(C), pages 29-35.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ji, Xiangfeng & Zhang, Jian & Ran, Bin, 2013. "A study on pedestrian choice between stairway and escalator in the transfer station based on floor field cellular automata," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(20), pages 5089-5100.
    2. Abdelghany, Ahmed & Abdelghany, Khaled & Mahmassani, Hani, 2016. "A hybrid simulation-assignment modeling framework for crowd dynamics in large-scale pedestrian facilities," Transportation Research Part A: Policy and Practice, Elsevier, vol. 86(C), pages 159-176.
    3. Canca, David & Zarzo, Alejandro & Algaba, Encarnación & Barrena, Eva, 2013. "Macroscopic attraction-based simulation of pedestrian mobility: A dynamic individual route-choice approach," European Journal of Operational Research, Elsevier, vol. 231(2), pages 428-442.
    4. Qingyan Ning & Maosheng Li, 2022. "Modeling Pedestrian Detour Behavior By-Passing Conflict Areas," Sustainability, MDPI, vol. 14(24), pages 1-17, December.
    5. Zhou, Zi-Xuan & Nakanishi, Wataru & Asakura, Yasuo, 2021. "Data-driven framework for the adaptive exit selection problem in pedestrian flow: Visual information based heuristics approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 583(C).
    6. Hänseler, Flurin S. & Bierlaire, Michel & Farooq, Bilal & Mühlematter, Thomas, 2014. "A macroscopic loading model for time-varying pedestrian flows in public walking areas," Transportation Research Part B: Methodological, Elsevier, vol. 69(C), pages 60-80.
    7. Li, Maosheng & Shu, Panpan & Xiao, Yao & Wang, Pu, 2021. "Modeling detour decision combined the tactical and operational layer based on perceived density," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 574(C).
    8. Haghani, Milad, 2021. "The knowledge domain of crowd dynamics: Anatomy of the field, pioneering studies, temporal trends, influential entities and outside-domain impact," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 580(C).
    9. Haghani, Milad & Sarvi, Majid & Shahhoseini, Zahra, 2019. "When ‘push’ does not come to ‘shove’: Revisiting ‘faster is slower’ in collective egress of human crowds," Transportation Research Part A: Policy and Practice, Elsevier, vol. 122(C), pages 51-69.
    10. Guo, Ren-Yong, 2014. "Simulation of spatial and temporal separation of pedestrian counter flow through a bottleneck," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 415(C), pages 428-439.
    11. Ziyou Gao & Yunchao Qu & Xingang Li & Jiancheng Long & Hai-Jun Huang, 2014. "Simulating the Dynamic Escape Process in Large Public Places," Operations Research, INFORMS, vol. 62(6), pages 1344-1357, December.
    12. Flurin S. Hänseler & Nicholas A. Molyneaux & Michel Bierlaire, 2017. "Estimation of Pedestrian Origin-Destination Demand in Train Stations," Transportation Science, INFORMS, vol. 51(3), pages 981-997, August.
    13. Yue, Hao & Guan, Hongzhi & Zhang, Juan & Shao, Chunfu, 2010. "Study on bi-direction pedestrian flow using cellular automata simulation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(3), pages 527-539.
    14. Zhang, Wenke & Zhang, Zhichao & Ma, Yueyao & Lee, Eric Wai Ming & Shi, Meng, 2024. "Psychological impatience in pedestrian evacuation: modelling, simulations and experiments," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 635(C).
    15. Shi, Meng & Lee, Eric Wai Ming & Ma, Yi, 2018. "A novel grid-based mesoscopic model for evacuation dynamics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 497(C), pages 198-210.
    16. Wang, Weili & Zhang, Jingjing & Li, Haicheng & Xie, Qimiao, 2020. "Experimental study on unidirectional pedestrian flows in a corridor with a fixed obstacle and a temporary obstacle," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 560(C).
    17. Zhou, Zi-Xuan & Nakanishi, Wataru & Asakura, Yasuo, 2021. "Route choice in the pedestrian evacuation: Microscopic formulation based on visual information," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 562(C).
    18. Hänseler, Flurin S. & Lam, William H.K. & Bierlaire, Michel & Lederrey, Gael & Nikolić, Marija, 2017. "A dynamic network loading model for anisotropic and congested pedestrian flows," Transportation Research Part B: Methodological, Elsevier, vol. 95(C), pages 149-168.
    19. Hoogendoorn, Serge P. & van Wageningen-Kessels, Femke L.M. & Daamen, Winnie & Duives, Dorine C., 2014. "Continuum modelling of pedestrian flows: From microscopic principles to self-organised macroscopic phenomena," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 416(C), pages 684-694.
    20. Saberi, Meead & Aghabayk, Kayvan & Sobhani, Amir, 2015. "Spatial fluctuations of pedestrian velocities in bidirectional streams: Exploring the effects of self-organization," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 434(C), pages 120-128.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:392:y:2013:i:8:p:1828-1839. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.