A heterogeneous lattice gas model for simulating pedestrian evacuation
Author
Abstract
Suggested Citation
DOI: 10.1016/j.physa.2011.07.055
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Parisi, D.R. & Dorso, C.O., 2007. "Morphological and dynamical aspects of the room evacuation process," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 385(1), pages 343-355.
- Guo, R.Y. & Huang, H.J., 2008. "A mobile lattice gas model for simulating pedestrian evacuation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(2), pages 580-586.
- Tajima, Yusuke & Nagatani, Takashi, 2002. "Clogging transition of pedestrian flow in T-shaped channel," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 303(1), pages 239-250.
- Henein, Colin M. & White, Tony, 2007. "Macroscopic effects of microscopic forces between agents in crowd models," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 373(C), pages 694-712.
- Perez, Gay Jane & Tapang, Giovanni & Lim, May & Saloma, Caesar, 2002. "Streaming, disruptive interference and power-law behavior in the exit dynamics of confined pedestrians," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 312(3), pages 609-618.
- Kirchner, Ansgar & Klüpfel, Hubert & Nishinari, Katsuhiro & Schadschneider, Andreas & Schreckenberg, Michael, 2003. "Simulation of competitive egress behavior: comparison with aircraft evacuation data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 324(3), pages 689-697.
- Dirk Helbing & Illés Farkas & Tamás Vicsek, 2000. "Simulating dynamical features of escape panic," Nature, Nature, vol. 407(6803), pages 487-490, September.
- Takimoto, Kouhei & Nagatani, Takashi, 2003. "Spatio-temporal distribution of escape time in evacuation process," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 320(C), pages 611-621.
- Burstedde, C & Klauck, K & Schadschneider, A & Zittartz, J, 2001. "Simulation of pedestrian dynamics using a two-dimensional cellular automaton," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 295(3), pages 507-525.
- Song, Weiguo & Xu, Xuan & Wang, Bing-Hong & Ni, Shunjiang, 2006. "Simulation of evacuation processes using a multi-grid model for pedestrian dynamics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 363(2), pages 492-500.
- Nagai, Ryoichi & Nagatani, Takashi & Isobe, Motoshige & Adachi, Taku, 2004. "Effect of exit configuration on evacuation of a room without visibility," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 343(C), pages 712-724.
- Varas, A. & Cornejo, M.D. & Mainemer, D. & Toledo, B. & Rogan, J. & Muñoz, V. & Valdivia, J.A., 2007. "Cellular automaton model for evacuation process with obstacles," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 382(2), pages 631-642.
- Yuan, Weifeng & Tan, Kang Hai, 2007. "An evacuation model using cellular automata," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 384(2), pages 549-566.
- Muramatsu, Masakuni & Irie, Tunemasa & Nagatani, Takashi, 1999. "Jamming transition in pedestrian counter flow," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 267(3), pages 487-498.
- Kirchner, Ansgar & Schadschneider, Andreas, 2002. "Simulation of evacuation processes using a bionics-inspired cellular automaton model for pedestrian dynamics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 312(1), pages 260-276.
- Daoliang, Zhao & Lizhong, Yang & Jian, Li, 2006. "Exit dynamics of occupant evacuation in an emergency," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 363(2), pages 501-511.
- Jiang, Rui & Wu, Qing-Song, 2007. "Pedestrian behaviors in a lattice gas model with large maximum velocity," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 373(C), pages 683-693.
- Weng, W.G. & Shen, S.F. & Yuan, H.Y. & Fan, W.C., 2007. "A behavior-based model for pedestrian counter flow," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 375(2), pages 668-678.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Li, Lin & Yu, Zhonghai & Chen, Yang, 2014. "Evacuation dynamic and exit optimization of a supermarket based on particle swarm optimization," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 416(C), pages 157-172.
- Hou, Lei & Liu, Jian-Guo & Pan, Xue & Wang, Bing-Hong, 2014. "A social force evacuation model with the leadership effect," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 400(C), pages 93-99.
- Cao, Shuchao & Song, Weiguo & Lv, Wei & Fang, Zhiming, 2015. "A multi-grid model for pedestrian evacuation in a room without visibility," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 436(C), pages 45-61.
- Liu, Qian, 2018. "A social force model for the crowd evacuation in a terrorist attack," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 502(C), pages 315-330.
- Yang, Junheng & Zang, Xiaodong & Chen, Weiying & Luo, Qiang & Wang, Rui & Liu, Yuanqian, 2024. "Improved social force model based on pedestrian collision avoidance behavior in counterflow," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 642(C).
- Guo, Xiwei & Chen, Jianqiao & You, Suozhu & Wei, Junhong, 2013. "Modeling of pedestrian evacuation under fire emergency based on an extended heterogeneous lattice gas model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(9), pages 1994-2006.
- Yu Song & Jia Liu & Qian Liu, 2021. "Dynamic Decision-Making Process of Evacuees during Post-Earthquake Evacuation near an Automatic Flap Barrier Gate System: A Broken Windows Perspective," Sustainability, MDPI, vol. 13(16), pages 1-19, August.
- Jie Xu & Yao Ning & Heng Wei & Wei Xie & Jianyuan Guo & Limin Jia & Yong Qin, 2015. "Route Choice in Subway Station during Morning Peak Hours: A Case of Guangzhou Subway," Discrete Dynamics in Nature and Society, Hindawi, vol. 2015, pages 1-8, March.
- Zhang, Zhao & Fu, Daocheng, 2022. "Modeling pedestrian–vehicle mixed-flow in a complex evacuation scenario," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 599(C).
- Yunqiang Xue & Meng Zhong & Luowei Xue & Bing Zhang & Haokai Tu & Caifeng Tan & Qifang Kong & Hongzhi Guan, 2022. "Simulation Analysis of Bus Passenger Boarding and Alighting Behavior Based on Cellular Automata," Sustainability, MDPI, vol. 14(4), pages 1-16, February.
- Cirillo, Emilio N.M. & Muntean, Adrian, 2013. "Dynamics of pedestrians in regions with no visibility— A lattice model without exclusion," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(17), pages 3578-3588.
- Li, Jun & Fu, Siyao & He, Haibo & Jia, Hongfei & Li, Yanzhong & Guo, Yi, 2015. "Simulating large-scale pedestrian movement using CA and event driven model: Methodology and case study," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 437(C), pages 304-321.
- Wu, Jie & Wang, Xiuling & Chen, Jinjin & Shu, Gang & Li, Ya, 2015. "The position of a door can significantly impact on pedestrians’ evacuation time in an emergency," Applied Mathematics and Computation, Elsevier, vol. 258(C), pages 29-35.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Zheng, Ying & Jia, Bin & Li, Xin-Gang & Zhu, Nuo, 2011. "Evacuation dynamics with fire spreading based on cellular automaton," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(18), pages 3147-3156.
- Srinivasan, Aravinda Ramakrishnan & Karan, Farshad Salimi Naneh & Chakraborty, Subhadeep, 2017. "Pedestrian dynamics with explicit sharing of exit choice during egress through a long corridor," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 468(C), pages 770-782.
- Yue, Hao & Guan, Hongzhi & Zhang, Juan & Shao, Chunfu, 2010. "Study on bi-direction pedestrian flow using cellular automata simulation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(3), pages 527-539.
- Miyagawa, Daiki & Ichinose, Genki, 2020. "Cellular automaton model with turning behavior in crowd evacuation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 549(C).
- Zheng, Xiaoping & Li, Wei & Guan, Chao, 2010. "Simulation of evacuation processes in a square with a partition wall using a cellular automaton model for pedestrian dynamics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(11), pages 2177-2188.
- Fu, Zhijian & Zhou, Xiaodong & Zhu, Kongjin & Chen, Yanqiu & Zhuang, Yifan & Hu, Yuqi & Yang, Lizhong & Chen, Changkun & Li, Jian, 2015. "A floor field cellular automaton for crowd evacuation considering different walking abilities," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 420(C), pages 294-303.
- Haghani, Milad, 2021. "The knowledge domain of crowd dynamics: Anatomy of the field, pioneering studies, temporal trends, influential entities and outside-domain impact," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 580(C).
- Suma, Yushi & Yanagisawa, Daichi & Nishinari, Katsuhiro, 2012. "Anticipation effect in pedestrian dynamics: Modeling and experiments," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(1), pages 248-263.
- Chen, Changkun & Sun, Huakai & Lei, Peng & Zhao, Dongyue & Shi, Congling, 2021. "An extended model for crowd evacuation considering pedestrian panic in artificial attack," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 571(C).
- Zheng, Yaochen & Chen, Jianqiao & Wei, Junhong & Guo, Xiwei, 2012. "Modeling of pedestrian evacuation based on the particle swarm optimization algorithm," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(17), pages 4225-4233.
- Li, Xiao-Yang & Lin, Zhi-Yang & Zhang, Peng & Zhang, Xiao-Ning, 2023. "Reconstruction of density and cost potential field of Eikonal equation: Applications to discrete pedestrian flow models," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 629(C).
- Feliciani, Claudio & Nishinari, Katsuhiro, 2016. "An improved Cellular Automata model to simulate the behavior of high density crowd and validation by experimental data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 451(C), pages 135-148.
- Ma, Yi & Yuen, Richard Kwok Kit & Lee, Eric Wai Ming, 2016. "Effective leadership for crowd evacuation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 450(C), pages 333-341.
- Shang, Hua-Yan & Huang, Hai-Jun & Zhang, Yi-Ming, 2015. "An extended mobile lattice gas model allowing pedestrian step size variable," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 424(C), pages 283-293.
- Varas, A. & Cornejo, M.D. & Mainemer, D. & Toledo, B. & Rogan, J. & Muñoz, V. & Valdivia, J.A., 2007. "Cellular automaton model for evacuation process with obstacles," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 382(2), pages 631-642.
- Ezaki, Takahiro & Yanagisawa, Daichi & Ohtsuka, Kazumichi & Nishinari, Katsuhiro, 2012. "Simulation of space acquisition process of pedestrians using Proxemic Floor Field Model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(1), pages 291-299.
- Huang, Rong & Zhao, Xuan & Zhou, Chenyu & Kong, Lingchen & Liu, Chengqing & Yu, Qiang, 2022. "Static floor field construction and fine discrete cellular automaton model: Algorithms, simulations and insights," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 606(C).
- Tamang, Nutthavuth & Sun, Yi, 2023. "Application of the dynamic Monte Carlo method to pedestrian evacuation dynamics," Applied Mathematics and Computation, Elsevier, vol. 445(C).
- Fu, Zhijian & Yang, Lizhong & Chen, Yanqiu & Zhu, Kongjin & Zhu, Shi, 2013. "The effect of individual tendency on crowd evacuation efficiency under inhomogeneous exit attraction using a static field modified FFCA model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(23), pages 6090-6099.
- Yue, Hao & Zhang, Junyao & Chen, Wenxin & Wu, Xinsen & Zhang, Xu & Shao, Chunfu, 2021. "Simulation of the influence of spatial obstacles on evacuation pedestrian flow in walking facilities," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 571(C).
More about this item
Keywords
Heterogeneous lattice gas model; Local population density; Pedestrian evacuation; Interactions between pedestrians; Critical force of injury;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:391:y:2012:i:3:p:582-592. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.