IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v549y2020ics0378437120301412.html
   My bibliography  Save this article

Cellular automaton model with turning behavior in crowd evacuation

Author

Listed:
  • Miyagawa, Daiki
  • Ichinose, Genki

Abstract

Effective evacuation policies in emergency situations are important to save lives. To develop such policies, simulation models based on cellular automata have been used for crowd evacuation dynamics. In most previous studies of crowd evacuations, an evacuee is represented by a 1 × 1 square. However, a rectangle (1 × 2) representation is more suitable for such models than the square representation because of evacuees’ shoulder width. The rectangle representation gives two new features to evacuees’ behaviors: moving sideways and turning. We study the effects of these behaviors on crowd evacuation dynamics. Hence, we constructed a cellular automaton model where evacuees whose shoulder widths are 1 × 2 try to escape from a room in an emergency situation. The simulation results showed that turning behavior can make the evacuation time shorter and there is an optimal turning rate for the crowd evacuation. Our findings contribute to the effective control of evacuees in emergency situations.

Suggested Citation

  • Miyagawa, Daiki & Ichinose, Genki, 2020. "Cellular automaton model with turning behavior in crowd evacuation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 549(C).
  • Handle: RePEc:eee:phsmap:v:549:y:2020:i:c:s0378437120301412
    DOI: 10.1016/j.physa.2020.124376
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437120301412
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2020.124376?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Guo, R.Y. & Huang, H.J., 2008. "A mobile lattice gas model for simulating pedestrian evacuation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(2), pages 580-586.
    2. Huang, Keke & Zheng, Xiaoping & Cheng, Yuan & Yang, Yeqing, 2017. "Behavior-based cellular automaton model for pedestrian dynamics," Applied Mathematics and Computation, Elsevier, vol. 292(C), pages 417-424.
    3. Guo, Xiwei & Chen, Jianqiao & You, Suozhu & Wei, Junhong, 2013. "Modeling of pedestrian evacuation under fire emergency based on an extended heterogeneous lattice gas model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(9), pages 1994-2006.
    4. Nagai, Ryoichi & Nagatani, Takashi, 2006. "Jamming transition in counter flow of slender particles on square lattice," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 366(C), pages 503-512.
    5. Dirk Helbing & Illés Farkas & Tamás Vicsek, 2000. "Simulating dynamical features of escape panic," Nature, Nature, vol. 407(6803), pages 487-490, September.
    6. Li, Yang & Chen, Maoyin & Dou, Zhan & Zheng, Xiaoping & Cheng, Yuan & Mebarki, Ahmed, 2019. "A review of cellular automata models for crowd evacuation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 526(C).
    7. Guo, Ren-Yong & Huang, Hai-Jun & Wong, S.C., 2012. "Route choice in pedestrian evacuation under conditions of good and zero visibility: Experimental and simulation results," Transportation Research Part B: Methodological, Elsevier, vol. 46(6), pages 669-686.
    8. Takimoto, Kouhei & Nagatani, Takashi, 2003. "Spatio-temporal distribution of escape time in evacuation process," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 320(C), pages 611-621.
    9. Tajima, Yusuke & Takimoto, Kouhei & Nagatani, Takashi, 2002. "Pattern formation and jamming transition in pedestrian counter flow," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 313(3), pages 709-723.
    10. Haghani, Milad & Sarvi, Majid, 2017. "Social dynamics in emergency evacuations: Disentangling crowd’s attraction and repulsion effects," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 475(C), pages 24-34.
    11. Fukamachi, Masahiro & Nagatani, Takashi, 2007. "Sidle effect on pedestrian counter flow," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 377(1), pages 269-278.
    12. Tanimoto, Jun & Hagishima, Aya & Tanaka, Yasukaka, 2010. "Study of bottleneck effect at an emergency evacuation exit using cellular automata model, mean field approximation analysis, and game theory," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(24), pages 5611-5618.
    13. Yuan, Weifeng & Tan, Kang Hai, 2007. "An evacuation model using cellular automata," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 384(2), pages 549-566.
    14. Song, Xiao & Ma, Liang & Ma, Yaofei & Yang, Chen & Ji, Hang, 2016. "Selfishness- and Selflessness-based models of pedestrian room evacuation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 447(C), pages 455-466.
    15. Li, Xiaomeng & Chen, Tao & Pan, Lili & Shen, Shifei & Yuan, Hongyong, 2008. "Lattice gas simulation and experiment study of evacuation dynamics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(22), pages 5457-5465.
    16. Muramatsu, Masakuni & Irie, Tunemasa & Nagatani, Takashi, 1999. "Jamming transition in pedestrian counter flow," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 267(3), pages 487-498.
    17. Takimoto, Kouhei & Tajima, Yusuke & Nagatani, Takashi, 2002. "Effect of partition line on jamming transition in pedestrian counter flow," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 308(1), pages 460-470.
    18. Yamamoto, Hiroki & Yanagisawa, Daichi & Feliciani, Claudio & Nishinari, Katsuhiro, 2019. "Body-rotation behavior of pedestrians for collision avoidance in passing and cross flow," Transportation Research Part B: Methodological, Elsevier, vol. 122(C), pages 486-510.
    19. Armin Seyfried & Oliver Passon & Bernhard Steffen & Maik Boltes & Tobias Rupprecht & Wolfram Klingsch, 2009. "New Insights into Pedestrian Flow Through Bottlenecks," Transportation Science, INFORMS, vol. 43(3), pages 395-406, August.
    20. Jin, Cheng-Jie & Jiang, Rui & Yin, Jun-Lin & Dong, Li-Yun & Li, Dawei, 2017. "Simulating bi-directional pedestrian flow in a cellular automaton model considering the body-turning behavior," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 482(C), pages 666-681.
    21. Huang, Keke & Zheng, Xiaoping & Yang, Yeqing & Wang, Tao, 2015. "Behavioral evolution in evacuation crowd based on heterogeneous rationality of small groups," Applied Mathematics and Computation, Elsevier, vol. 266(C), pages 501-506.
    22. Tajima, Yusuke & Nagatani, Takashi, 2001. "Scaling behavior of crowd flow outside a hall," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 292(1), pages 545-554.
    23. Zheng, Xiaoping & Cheng, Yuan, 2011. "Conflict game in evacuation process: A study combining Cellular Automata model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(6), pages 1042-1050.
    24. Cheng, Yuan & Zheng, Xiaoping, 2018. "Emergence of cooperation during an emergency evacuation," Applied Mathematics and Computation, Elsevier, vol. 320(C), pages 485-494.
    25. Zheng, Ying & Jia, Bin & Li, Xin-Gang & Zhu, Nuo, 2011. "Evacuation dynamics with fire spreading based on cellular automaton," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(18), pages 3147-3156.
    26. Dirk Helbing & Lubos Buzna & Anders Johansson & Torsten Werner, 2005. "Self-Organized Pedestrian Crowd Dynamics: Experiments, Simulations, and Design Solutions," Transportation Science, INFORMS, vol. 39(1), pages 1-24, February.
    27. Cheng, Yuan & Zheng, Xiaoping, 2018. "Can cooperative behaviors promote evacuation efficiency?," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 492(C), pages 2069-2078.
    28. Burstedde, C & Klauck, K & Schadschneider, A & Zittartz, J, 2001. "Simulation of pedestrian dynamics using a two-dimensional cellular automaton," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 295(3), pages 507-525.
    29. Mohd Ibrahim, Azhar & Venkat, Ibrahim & Wilde, Philippe De, 2017. "Uncertainty in a spatial evacuation model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 479(C), pages 485-497.
    30. Tian, Huan-huan & Wei, Yan-fang & Dong, Li-yun & Xue, Yu & Zheng, Rong-sen, 2018. "Resolution of conflicts in cellular automaton evacuation model with the game-theory," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 503(C), pages 991-1006.
    31. Ma, Yi & Yuen, Richard Kwok Kit & Lee, Eric Wai Ming, 2016. "Effective leadership for crowd evacuation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 450(C), pages 333-341.
    32. Varas, A. & Cornejo, M.D. & Mainemer, D. & Toledo, B. & Rogan, J. & Muñoz, V. & Valdivia, J.A., 2007. "Cellular automaton model for evacuation process with obstacles," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 382(2), pages 631-642.
    33. Kirchner, Ansgar & Schadschneider, Andreas, 2002. "Simulation of evacuation processes using a bionics-inspired cellular automaton model for pedestrian dynamics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 312(1), pages 260-276.
    34. Fu, Zhijian & Zhou, Xiaodong & Zhu, Kongjin & Chen, Yanqiu & Zhuang, Yifan & Hu, Yuqi & Yang, Lizhong & Chen, Changkun & Li, Jian, 2015. "A floor field cellular automaton for crowd evacuation considering different walking abilities," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 420(C), pages 294-303.
    35. Li, Shuang & Zhai, Changhai & Xie, Lili, 2015. "Occupant evacuation and casualty estimation in a building under earthquake using cellular automata," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 424(C), pages 152-167.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shang, Xue-Cheng & Li, Xin-Gang & Xie, Dong-Fan & Jia, Bin & Jiang, Rui & Liu, Feng, 2022. "A data-driven two-lane traffic flow model based on cellular automata," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 588(C).
    2. Chen, Changkun & Sun, Huakai & Lei, Peng & Zhao, Dongyue & Shi, Congling, 2021. "An extended model for crowd evacuation considering pedestrian panic in artificial attack," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 571(C).
    3. Xie, Qimiao & Wu, Yaxin & Wang, Yitian & Zhang, Hui, 2024. "A multi-grid evacuation model considering the effects of different turning types," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 635(C).
    4. Zhihai, Tang & Longcheng, Yang & Jun, Hu & Xiaoning, Li & Lei, You, 2024. "An improved social force model for improving pedestrian avoidance by reducing search size," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 643(C).
    5. Ren, Huan & Yan, Yuyue & Gao, Fengqiang, 2021. "Variable guiding strategies in multi-exits evacuation: Pursuing balanced pedestrian densities," Applied Mathematics and Computation, Elsevier, vol. 397(C).
    6. Fang, Shuyi & Jin, Cheng-Jie & Jiang, Rui & Li, Dawei, 2024. "Simulating the bi-directional pedestrian flow under high densities by a floor field cellular automaton model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 638(C).
    7. Liu, Jing & Jia, Yang & Mao, Tianlu & Wang, Zhaoqi, 2022. "Modeling and simulation analysis of crowd evacuation behavior under terrorist attack," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 604(C).
    8. Zhang, Zhao & Fu, Daocheng, 2022. "Modeling pedestrian–vehicle mixed-flow in a complex evacuation scenario," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 599(C).
    9. Gao, Fengqiang & Yan, Yuyue & Chen, Zhihao & Zheng, Linxiao & Ren, Huan, 2022. "Effect of density control in partially observable asymmetric-exit evacuation under guidance: Strategic suggestion under time delay," Applied Mathematics and Computation, Elsevier, vol. 418(C).
    10. Liu, Ying & Yu, Jiaqi & Yin, Qing & Sun, Cheng & Sun, Ang, 2021. "Impacts of human factors on evacuation performance in university gymnasiums," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 582(C).
    11. Bao, Yu & Huo, Feizhou, 2021. "An agent-based model for staircase evacuation considering agent’s rotational behavior," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 572(C).
    12. Yu, Rongfu & Mao, Qinghua & Lv, Jian, 2022. "An extended model for crowd evacuation considering rescue behavior," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 605(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zou, Baobao & Lu, Chunxia & Mao, Shirong & Li, Yi, 2020. "Effect of pedestrian judgement on evacuation efficiency considering hesitation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 547(C).
    2. Zheng, Ying & Jia, Bin & Li, Xin-Gang & Zhu, Nuo, 2011. "Evacuation dynamics with fire spreading based on cellular automaton," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(18), pages 3147-3156.
    3. Haghani, Milad, 2021. "The knowledge domain of crowd dynamics: Anatomy of the field, pioneering studies, temporal trends, influential entities and outside-domain impact," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 580(C).
    4. Liu, Qian, 2018. "A social force model for the crowd evacuation in a terrorist attack," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 502(C), pages 315-330.
    5. Mohd Ibrahim, Azhar & Venkat, Ibrahim & Wilde, Philippe De, 2017. "Uncertainty in a spatial evacuation model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 479(C), pages 485-497.
    6. Liu, Qian, 2018. "The effect of dedicated exit on the evacuation of heterogeneous pedestrians," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 506(C), pages 305-323.
    7. Guo, Xiwei & Chen, Jianqiao & Zheng, Yaochen & Wei, Junhong, 2012. "A heterogeneous lattice gas model for simulating pedestrian evacuation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(3), pages 582-592.
    8. Tian, Huan-huan & Wei, Yan-fang & Dong, Li-yun & Xue, Yu & Zheng, Rong-sen, 2018. "Resolution of conflicts in cellular automaton evacuation model with the game-theory," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 503(C), pages 991-1006.
    9. Zheng, Ying & Li, Xingang & Zhu, Nuo & Jia, Bin & Jiang, Rui, 2018. "Evacuation dynamics with smoking diffusion in three dimension based on an extended Floor-Field model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 507(C), pages 414-426.
    10. Huang, Keke & Zheng, Xiaoping, 2017. "A weighted evolving network model for pedestrian evacuation," Applied Mathematics and Computation, Elsevier, vol. 298(C), pages 57-64.
    11. Guo, Fang & Li, Xingli & Kuang, Hua & Bai, Yang & Zhou, Huaguo, 2016. "An extended cost potential field cellular automata model considering behavior variation of pedestrian flow," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 462(C), pages 630-640.
    12. Li, Jun & Fu, Siyao & He, Haibo & Jia, Hongfei & Li, Yanzhong & Guo, Yi, 2015. "Simulating large-scale pedestrian movement using CA and event driven model: Methodology and case study," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 437(C), pages 304-321.
    13. Li, Xingli & Guo, Fang & Kuang, Hua & Zhou, Huaguo, 2017. "Effect of psychological tension on pedestrian counter flow via an extended cost potential field cellular automaton model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 487(C), pages 47-57.
    14. Yu Song & Jia Liu & Qian Liu, 2021. "Dynamic Decision-Making Process of Evacuees during Post-Earthquake Evacuation near an Automatic Flap Barrier Gate System: A Broken Windows Perspective," Sustainability, MDPI, vol. 13(16), pages 1-19, August.
    15. Zhang, Wenke & Zhang, Zhichao & Ma, Yueyao & Lee, Eric Wai Ming & Shi, Meng, 2024. "Psychological impatience in pedestrian evacuation: modelling, simulations and experiments," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 635(C).
    16. Huo, Feizhou & Li, Chao & Li, Yufei & Lv, Wei & Ma, Yaping, 2022. "An extended model for describing pedestrian evacuation considering the impact of obstacles on the visual view," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 604(C).
    17. Tao, Y.Z. & Dong, L.Y., 2017. "A Cellular Automaton model for pedestrian counterflow with swapping," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 475(C), pages 155-168.
    18. Qiu, Hongpeng & Wang, Xuan & Lin, Peng & Lee, Eric W.M., 2024. "Effects of step time and neighbourhood rules on pedestrian evacuation using an extended cellular automata model considering aggressiveness," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 636(C).
    19. Li, Yang & Chen, Maoyin & Zheng, Xiaoping & Dou, Zhan & Cheng, Yuan, 2020. "Relationship between behavior aggressiveness and pedestrian dynamics using behavior-based cellular automata model," Applied Mathematics and Computation, Elsevier, vol. 371(C).
    20. Cao, Shuchao & Song, Weiguo & Lv, Wei & Fang, Zhiming, 2015. "A multi-grid model for pedestrian evacuation in a room without visibility," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 436(C), pages 45-61.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:549:y:2020:i:c:s0378437120301412. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.