IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v10y2022i6p866-d767174.html
   My bibliography  Save this article

A Note on Exponential Stability for Numerical Solution of Neutral Stochastic Functional Differential Equations

Author

Listed:
  • Qi Wang

    (Department of Mathematics, Nanchang University, Nanchang 330031, China)

  • Huabin Chen

    (Department of Mathematics, Nanchang University, Nanchang 330031, China)

  • Chenggui Yuan

    (Department of Mathematics, Bay Campus, Swansea University, Swansea SA1 8EN, UK)

Abstract

This paper examines the numerical solutions of the neutral stochastic functional differential equation. This study establishes the discrete stochastic Razumikhin-type theorem to investigate the exponential stability in the mean square sense of the Euler–Maruyama numerical solution to this equation. In addition, the Borel–Cantelli lemma and the stochastic analysis theory are incorporated to discuss the almost sure exponential stability for this numerical solution of such equations.

Suggested Citation

  • Qi Wang & Huabin Chen & Chenggui Yuan, 2022. "A Note on Exponential Stability for Numerical Solution of Neutral Stochastic Functional Differential Equations," Mathematics, MDPI, vol. 10(6), pages 1-11, March.
  • Handle: RePEc:gam:jmathe:v:10:y:2022:i:6:p:866-:d:767174
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/10/6/866/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/10/6/866/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Li, Guangjie & Yang, Qigui, 2021. "Stability analysis of the θ-method for hybrid neutral stochastic functional differential equations with jumps," Chaos, Solitons & Fractals, Elsevier, vol. 150(C).
    2. Mao, Xuerong, 1996. "Razumikhin-type theorems on exponential stability of stochastic functional differential equations," Stochastic Processes and their Applications, Elsevier, vol. 65(2), pages 233-250, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zihan Zou & Yinfang Song & Chi Zhao, 2022. "Razumikhin Theorems on Polynomial Stability of Neutral Stochastic Pantograph Differential Equations with Markovian Switching," Mathematics, MDPI, vol. 10(17), pages 1-15, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhou, Jianping & Park, Ju H. & Ma, Qian, 2016. "Non-fragile observer-based H∞ control for stochastic time-delay systems," Applied Mathematics and Computation, Elsevier, vol. 291(C), pages 69-83.
    2. Peng, Dongxue & Li, Xiaodi & Rakkiyappan, R. & Ding, Yanhui, 2021. "Stabilization of stochastic delayed systems: Event-triggered impulsive control," Applied Mathematics and Computation, Elsevier, vol. 401(C).
    3. Kao, Yonggui & Zhu, Quanxin & Qi, Wenhai, 2015. "Exponential stability and instability of impulsive stochastic functional differential equations with Markovian switching," Applied Mathematics and Computation, Elsevier, vol. 271(C), pages 795-804.
    4. Li, Dingshi & Lin, Yusen, 2021. "Periodic measures of impulsive stochastic differential equations," Chaos, Solitons & Fractals, Elsevier, vol. 148(C).
    5. Lijun Pan & Jinde Cao & Yong Ren, 2020. "Impulsive Stability of Stochastic Functional Differential Systems Driven by G-Brownian Motion," Mathematics, MDPI, vol. 8(2), pages 1-16, February.
    6. Natalya O. Sedova & Olga V. Druzhinina, 2023. "Exponential Stability of Nonlinear Time-Varying Delay Differential Equations via Lyapunov–Razumikhin Technique," Mathematics, MDPI, vol. 11(4), pages 1-15, February.
    7. Udom, Akaninyene Udo, 2012. "Exponential stabilization of stochastic interval system with time dependent parameters," European Journal of Operational Research, Elsevier, vol. 222(3), pages 523-528.
    8. Xiao, Hanni & Zhu, Quanxin & Karimi, Hamid Reza, 2022. "Stability analysis of semi-Markov switching stochastic mode-dependent delay systems with unstable subsystems," Chaos, Solitons & Fractals, Elsevier, vol. 165(P2).
    9. Zihan Zou & Yinfang Song & Chi Zhao, 2022. "Razumikhin Theorems on Polynomial Stability of Neutral Stochastic Pantograph Differential Equations with Markovian Switching," Mathematics, MDPI, vol. 10(17), pages 1-15, August.
    10. Mao, Wei & Hu, Liangjian & Mao, Xuerong, 2015. "The existence and asymptotic estimations of solutions to stochastic pantograph equations with diffusion and Lévy jumps," Applied Mathematics and Computation, Elsevier, vol. 268(C), pages 883-896.
    11. Lifu Wang & Bo Shen, 2023. "On the Parallelization Upper Bound for Asynchronous Stochastic Gradients Descent in Non-convex Optimization," Journal of Optimization Theory and Applications, Springer, vol. 196(3), pages 900-935, March.
    12. Cheng, Pei & Deng, Feiqi, 2010. "Global exponential stability of impulsive stochastic functional differential systems," Statistics & Probability Letters, Elsevier, vol. 80(23-24), pages 1854-1862, December.
    13. Peng, Shiguo & Jia, Baoguo, 2010. "Some criteria on pth moment stability of impulsive stochastic functional differential equations," Statistics & Probability Letters, Elsevier, vol. 80(13-14), pages 1085-1092, July.
    14. Mao, Wei & Zhu, Quanxin & Mao, Xuerong, 2015. "Existence, uniqueness and almost surely asymptotic estimations of the solutions to neutral stochastic functional differential equations driven by pure jumps," Applied Mathematics and Computation, Elsevier, vol. 254(C), pages 252-265.
    15. Shu, Huisheng & Wei, Guoliang, 2005. "H∞ analysis of nonlinear stochastic time-delay systems," Chaos, Solitons & Fractals, Elsevier, vol. 26(2), pages 637-647.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:10:y:2022:i:6:p:866-:d:767174. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.