IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v268y2015icp883-896.html
   My bibliography  Save this article

The existence and asymptotic estimations of solutions to stochastic pantograph equations with diffusion and Lévy jumps

Author

Listed:
  • Mao, Wei
  • Hu, Liangjian
  • Mao, Xuerong

Abstract

In this paper, we consider a class of stochastic pantograph differential equations with Lévy jumps (SPDEwLJs). By using the Burkholder–Davis–Gundy inequality and the Kunita’s inequality, we prove the existence and uniqueness of solutions to SPDEwLJs whose coefficients satisfying the Lipschitz conditions and the local Lipschitz conditions. Meantime, we establish the p-th exponential estimations and almost surely asymptotic estimations of solutions to SPDEwLJs.

Suggested Citation

  • Mao, Wei & Hu, Liangjian & Mao, Xuerong, 2015. "The existence and asymptotic estimations of solutions to stochastic pantograph equations with diffusion and Lévy jumps," Applied Mathematics and Computation, Elsevier, vol. 268(C), pages 883-896.
  • Handle: RePEc:eee:apmaco:v:268:y:2015:i:c:p:883-896
    DOI: 10.1016/j.amc.2015.06.109
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300315008905
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2015.06.109?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Nicola Bruti-Liberati & Eckhard Platen, 2007. "Approximation of jump diffusions in finance and economics," Computational Economics, Springer;Society for Computational Economics, vol. 29(3), pages 283-312, May.
    2. Mao, Xuerong, 1996. "Razumikhin-type theorems on exponential stability of stochastic functional differential equations," Stochastic Processes and their Applications, Elsevier, vol. 65(2), pages 233-250, December.
    3. Merton, Robert C., 1976. "Option pricing when underlying stock returns are discontinuous," Journal of Financial Economics, Elsevier, vol. 3(1-2), pages 125-144.
    4. Küchler, Uwe & Platen, Eckhard, 2000. "Strong discrete time approximation of stochastic differential equations with time delay," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 54(1), pages 189-205.
    5. Philippe Jorion, 1988. "On Jump Processes in the Foreign Exchange and Stock Markets," The Review of Financial Studies, Society for Financial Studies, vol. 1(4), pages 427-445.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dongdong Gao & Jianli Li, 2024. "Existence and Hyers–Ulam Stability for Random Impulsive Stochastic Pantograph Equations with the Caputo Fractional Derivative," Mathematics, MDPI, vol. 12(8), pages 1-16, April.
    2. Wan, Fangzhe & Hu, Po & Chen, Huabin, 2020. "Stability analysis of neutral stochastic differential delay equations driven by Lévy noises," Applied Mathematics and Computation, Elsevier, vol. 375(C).
    3. Amr Abosenna & Ghada AlNemer & Boping Tian, 2024. "Convergence and Almost Sure Polynomial Stability of Partially Truncated Split-Step Theta Method for Stochastic Pantograph Models with Lévy Jumps," Mathematics, MDPI, vol. 12(13), pages 1-16, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nicola Bruti-Liberati, 2007. "Numerical Solution of Stochastic Differential Equations with Jumps in Finance," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 1, July-Dece.
    2. Nicola Bruti-Liberati, 2007. "Numerical Solution of Stochastic Differential Equations with Jumps in Finance," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 1-2007, January-A.
    3. Khalaf, Lynda & Saphores, Jean-Daniel & Bilodeau, Jean-Francois, 2003. "Simulation-based exact jump tests in models with conditional heteroskedasticity," Journal of Economic Dynamics and Control, Elsevier, vol. 28(3), pages 531-553, December.
    4. Malz, Allan M., 1996. "Using option prices to estimate realignment probabilities in the European Monetary System: the case of sterling-mark," Journal of International Money and Finance, Elsevier, vol. 15(5), pages 717-748, October.
    5. Christensen, Kim & Oomen, Roel C.A. & Podolskij, Mark, 2014. "Fact or friction: Jumps at ultra high frequency," Journal of Financial Economics, Elsevier, vol. 114(3), pages 576-599.
    6. Zhou, Chunsheng, 2001. "The term structure of credit spreads with jump risk," Journal of Banking & Finance, Elsevier, vol. 25(11), pages 2015-2040, November.
    7. Björn Lutz, 2010. "Pricing of Derivatives on Mean-Reverting Assets," Lecture Notes in Economics and Mathematical Systems, Springer, number 978-3-642-02909-7, July.
    8. Das, Sanjiv R., 2002. "The surprise element: jumps in interest rates," Journal of Econometrics, Elsevier, vol. 106(1), pages 27-65, January.
    9. Danielsson, Jon & Zigrand, Jean-Pierre, 2006. "On time-scaling of risk and the square-root-of-time rule," Journal of Banking & Finance, Elsevier, vol. 30(10), pages 2701-2713, October.
    10. Calvet, Laurent E. & Fisher, Adlai J., 2008. "Multifrequency jump-diffusions: An equilibrium approach," Journal of Mathematical Economics, Elsevier, vol. 44(2), pages 207-226, January.
    11. Sharon S. Yang & Jr-Wei Huang & Chuang-Chang Chang, 2016. "Detecting and modelling the jump risk of CO 2 emission allowances and their impact on the valuation of option on futures contracts," Quantitative Finance, Taylor & Francis Journals, vol. 16(5), pages 749-762, May.
    12. Christina Nikitopoulos-Sklibosios, 2005. "A Class of Markovian Models for the Term Structure of Interest Rates Under Jump-Diffusions," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 6, July-Dece.
    13. Rzepkowski, Bronka, 2003. "The devaluation expectations in Hong Kong and their determinants," Journal of the Japanese and International Economies, Elsevier, vol. 17(2), pages 174-191, June.
    14. Mi-Hsiu Chiang & Chang-Yi Li & Son-Nan Chen, 2016. "Pricing currency options under double exponential jump diffusion in a Markov-modulated HJM economy," Review of Quantitative Finance and Accounting, Springer, vol. 46(3), pages 459-482, April.
    15. Melanie Cao & Batur Celik, 2021. "Valuation of bitcoin options," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 41(7), pages 1007-1026, July.
    16. Volk-Makarewicz, Warren & Borovkova, Svetlana & Heidergott, Bernd, 2022. "Assessing the impact of jumps in an option pricing model: A gradient estimation approach," European Journal of Operational Research, Elsevier, vol. 298(2), pages 740-751.
    17. Tunaru, Radu & Zheng, Teng, 2017. "Parameter estimation risk in asset pricing and risk management: A Bayesian approach," International Review of Financial Analysis, Elsevier, vol. 53(C), pages 80-93.
    18. Torben G. Andersen & Tim Bollerslev & Francis X. Diebold, 2007. "Roughing It Up: Including Jump Components in the Measurement, Modeling, and Forecasting of Return Volatility," The Review of Economics and Statistics, MIT Press, vol. 89(4), pages 701-720, November.
    19. Zhao, Pan & Pan, Jian & Yue, Qin & Zhang, Jinbo, 2021. "Pricing of financial derivatives based on the Tsallis statistical theory," Chaos, Solitons & Fractals, Elsevier, vol. 142(C).
    20. Yi-Hao Lai & Yi-Chiuan Wang & Wei-Shih Chung, 2018. "Initial Jump and Recovering Jump in the S&P 500 Index Returns: A Jump-Recovering-Switching Approach," Journal of Economics and Management, College of Business, Feng Chia University, Taiwan, vol. 14(1), pages 51-66, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:268:y:2015:i:c:p:883-896. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.