IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v373y2007icp252-260.html
   My bibliography  Save this article

Synchronization control of stochastic delayed neural networks

Author

Listed:
  • Yu, Wenwu
  • Cao, Jinde

Abstract

In this paper, synchronization control of stochastic neural networks with time-varying delays has been considered. A novel control method is given using the Lyapunov functional method and linear matrix inequality (LMI) approach. Several sufficient conditions have been derived to ensure the global asymptotical stability in mean square for the error system, and thus the drive system synchronize with the response system. Also, the estimation gains can be obtained. With these new and effective methods, synchronization can be achieved. Simulation results are given to verify the theoretical analysis in this paper.

Suggested Citation

  • Yu, Wenwu & Cao, Jinde, 2007. "Synchronization control of stochastic delayed neural networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 373(C), pages 252-260.
  • Handle: RePEc:eee:phsmap:v:373:y:2007:i:c:p:252-260
    DOI: 10.1016/j.physa.2006.04.105
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437106005528
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2006.04.105?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Küchler, Uwe & Platen, Eckhard, 2002. "Weak discrete time approximation of stochastic differential equations with time delay," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 59(6), pages 497-507.
    2. Li, Chunguang & Chen, Guanrong, 2004. "Phase synchronization in small-world networks of chaotic oscillators," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 341(C), pages 73-79.
    3. Küchler, Uwe & Platen, Eckhard, 2000. "Strong discrete time approximation of stochastic differential equations with time delay," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 54(1), pages 189-205.
    4. Li, Chunguang & Li, Shaowen & Liao, Xiaofeng & Yu, Juebang, 2004. "Synchronization in coupled map lattices with small-world delayed interactions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 335(3), pages 365-370.
    5. Wang, Weiwei & Cao, Jinde, 2006. "Synchronization in an array of linearly coupled networks with time-varying delay," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 366(C), pages 197-211.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Feng, Xiaomei & Zhang, Fengqin & Wang, Wenjuan, 2011. "Global exponential synchronization of delayed fuzzy cellular neural networks with impulsive effects," Chaos, Solitons & Fractals, Elsevier, vol. 44(1), pages 9-16.
    2. Wang, Liming & Wu, Kai-Ning & Zhu, Ya-Nan & Ding, Xiaohua, 2016. "Mean square H∞ synchronization of coupled stochastic partial differential systems," Applied Mathematics and Computation, Elsevier, vol. 275(C), pages 386-393.
    3. Li, Tao & Fei, Shu-min & Zhang, Kan-jian, 2008. "Synchronization control of recurrent neural networks with distributed delays," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(4), pages 982-996.
    4. Park, Ju H., 2009. "Synchronization of cellular neural networks of neutral type via dynamic feedback controller," Chaos, Solitons & Fractals, Elsevier, vol. 42(3), pages 1299-1304.
    5. Zhang, Hongmei & Cao, Jinde & Xiong, Lianglin, 2019. "Novel synchronization conditions for time-varying delayed Lur’e system with parametric uncertainty," Applied Mathematics and Computation, Elsevier, vol. 350(C), pages 224-236.
    6. Karimi, Hamid Reza & Maass, Peter, 2009. "Delay-range-dependent exponential H∞ synchronization of a class of delayed neural networks," Chaos, Solitons & Fractals, Elsevier, vol. 41(3), pages 1125-1135.
    7. Wang, Kai & Teng, Zhidong & Jiang, Haijun, 2008. "Adaptive synchronization of neural networks with time-varying delay and distributed delay," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(2), pages 631-642.
    8. Subramanian, K. & Muthukumar, P. & Lakshmanan, S., 2018. "State feedback synchronization control of impulsive neural networks with mixed delays and linear fractional uncertainties," Applied Mathematics and Computation, Elsevier, vol. 321(C), pages 267-281.
    9. Yu, Wenwu & Cao, Jinde, 2007. "Adaptive synchronization and lag synchronization of uncertain dynamical system with time delay based on parameter identification," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 375(2), pages 467-482.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Uwe Küchler & Eckhard Platen, 2007. "Time Delay and Noise Explaining Cyclical Fluctuations in Prices of Commodities," Research Paper Series 195, Quantitative Finance Research Centre, University of Technology, Sydney.
    2. Li, Chunguang & Chen, Guanrong, 2004. "Synchronization in general complex dynamical networks with coupling delays," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 343(C), pages 263-278.
    3. Uwe Küchler & Michael Sørensen, 2010. "A simple estimator for discrete-time samples from affine stochastic delay differential equations," Statistical Inference for Stochastic Processes, Springer, vol. 13(2), pages 125-132, June.
    4. Zhou, Jin & Xiang, Lan & Liu, Zengrong, 2007. "Synchronization in complex delayed dynamical networks with impulsive effects," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 384(2), pages 684-692.
    5. Küchler, Uwe & Platen, Eckhard, 2002. "Weak discrete time approximation of stochastic differential equations with time delay," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 59(6), pages 497-507.
    6. Zhou, Jin & Xiang, Lan & Liu, Zengrong, 2007. "Global synchronization in general complex delayed dynamical networks and its applications," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 385(2), pages 729-742.
    7. Yuan, Chenggui & Mao, Xuerong, 2004. "Convergence of the Euler–Maruyama method for stochastic differential equations with Markovian switching," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 64(2), pages 223-235.
    8. Hu, Rong, 2020. "Almost sure exponential stability of the Milstein-type schemes for stochastic delay differential equations," Chaos, Solitons & Fractals, Elsevier, vol. 131(C).
    9. Eckhard Platen, 2020. "Stochastic Modelling of the COVID-19 Epidemic," Research Paper Series 409, Quantitative Finance Research Centre, University of Technology, Sydney.
    10. Ghassan Dibeh & Haidar Harmanani, 2012. "A Stochastic Chartist–Fundamentalist Model with Time Delays," Computational Economics, Springer;Society for Computational Economics, vol. 40(2), pages 105-113, August.
    11. Mahmoudi, Fatemeh & Tahmasebi, Mahdieh, 2022. "The convergence of a numerical scheme for additive fractional stochastic delay equations with H>12," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 191(C), pages 219-231.
    12. Xiuwen Fu & Yongsheng Yang & Haiqing Yao, 2018. "Analysis on Invulnerability of Wireless Sensor Network towards Cascading Failures Based on Coupled Map Lattice," Complexity, Hindawi, vol. 2018, pages 1-14, January.
    13. Wang, Kai & Teng, Zhidong & Jiang, Haijun, 2008. "Adaptive synchronization of neural networks with time-varying delay and distributed delay," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(2), pages 631-642.
    14. Xiaopeng Xi & Donghua Zhou, 2022. "Prognostics of fractional degradation processes with state-dependent delay," Journal of Risk and Reliability, , vol. 236(1), pages 114-124, February.
    15. Mao, Wei & Hu, Liangjian & Mao, Xuerong, 2015. "The existence and asymptotic estimations of solutions to stochastic pantograph equations with diffusion and Lévy jumps," Applied Mathematics and Computation, Elsevier, vol. 268(C), pages 883-896.
    16. Liu, Xiwei & Chen, Tianping, 2007. "Exponential synchronization of nonlinear coupled dynamical networks with a delayed coupling," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 381(C), pages 82-92.
    17. Yuan, Haiyan & Zhu, Quanxin, 2024. "Practical stability of the analytical and numerical solutions of stochastic delay differential equations driven by G-Brownian motion via some novel techniques," Chaos, Solitons & Fractals, Elsevier, vol. 183(C).
    18. Mao, Wei & Zhu, Quanxin & Mao, Xuerong, 2015. "Existence, uniqueness and almost surely asymptotic estimations of the solutions to neutral stochastic functional differential equations driven by pure jumps," Applied Mathematics and Computation, Elsevier, vol. 254(C), pages 252-265.
    19. Moujahid, Abdelmalik & d’Anjou, Alicia & Cases, Blanca, 2012. "Community structure in real-world networks from a non-parametrical synchronization-based dynamical approach," Chaos, Solitons & Fractals, Elsevier, vol. 45(9), pages 1171-1179.
    20. Lu, Jianquan & Ho, Daniel W.C., 2008. "Local and global synchronization in general complex dynamical networks with delay coupling," Chaos, Solitons & Fractals, Elsevier, vol. 37(5), pages 1497-1510.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:373:y:2007:i:c:p:252-260. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.