IDEAS home Printed from https://ideas.repec.org/a/sae/risrel/v236y2022i1p114-124.html
   My bibliography  Save this article

Prognostics of fractional degradation processes with state-dependent delay

Author

Listed:
  • Xiaopeng Xi
  • Donghua Zhou

Abstract

In modern industrial processes, the remaining useful life (RUL) of core manufacturing equipments is regarded as an important indicator for assessing the continuous serving ability by considering safety and reliability. Accurate RUL predictions contribute to saving maintenance costs, and can be applied to the life extension technologies. Being subjected to complicated noise environments, the fractional characteristic usually exists in the stochastic heterogeneous diffusions. Traditional methods mostly utilize the fractional Brownian motion (FBM) to describe a simple class of memory effect in the time domain, but lose sight of potential time-varying state-dependencies from historical information. In view of uncertain lagging levels, the state-dependent delay (SDD) is introduced to construct a novel nonlinear fractional degradation model in this paper. Based on a specific discretization scheme, the unknown parameters are estimated by optimizing an approximate log-likelihood function. The RUL distribution is then derived under a Markovian statistical transformation. Finally, a case study on certain hearth wall degradation processes is provided to validate the proposed prognostic method in production practice.

Suggested Citation

  • Xiaopeng Xi & Donghua Zhou, 2022. "Prognostics of fractional degradation processes with state-dependent delay," Journal of Risk and Reliability, , vol. 236(1), pages 114-124, February.
  • Handle: RePEc:sae:risrel:v:236:y:2022:i:1:p:114-124
    DOI: 10.1177/1748006X211028090
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.1177/1748006X211028090
    Download Restriction: no

    File URL: https://libkey.io/10.1177/1748006X211028090?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Zhang, Zhengxin & Si, Xiaosheng & Hu, Changhua & Lei, Yaguo, 2018. "Degradation data analysis and remaining useful life estimation: A review on Wiener-process-based methods," European Journal of Operational Research, Elsevier, vol. 271(3), pages 775-796.
    2. Küchler, Uwe & Platen, Eckhard, 2000. "Strong discrete time approximation of stochastic differential equations with time delay," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 54(1), pages 189-205.
    3. Yongbin Liu & Bing He & Fang Liu & Siliang Lu & Yilei Zhao & Jiwen Zhao, 2016. "Remaining Useful Life Prediction of Rolling Bearings Using PSR, JADE, and Extreme Learning Machine," Mathematical Problems in Engineering, Hindawi, vol. 2016, pages 1-13, April.
    4. Song, Wanqing & Cattani, Carlo & Chi, Chi-Hung, 2020. "Multifractional Brownian motion and quantum-behaved particle swarm optimization for short term power load forecasting: An integrated approach," Energy, Elsevier, vol. 194(C).
    5. Song Wanqing & Xiaoxian Chen & Carlo Cattani & Enrico Zio, 2020. "Multifractional Brownian Motion and Quantum-Behaved Partial Swarm Optimization for Bearing Degradation Forecasting," Complexity, Hindawi, vol. 2020, pages 1-9, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Khoa Tran & Hai-Canh Vu & Lam Pham & Nassim Boudaoud & Ho-Si-Hung Nguyen, 2024. "Robust-MBDL: A Robust Multi-Branch Deep-Learning-Based Model for Remaining Useful Life Prediction of Rotating Machines," Mathematics, MDPI, vol. 12(10), pages 1-25, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liu, He & Song, Wanqing & Li, Ming & Kudreyko, Aleksey & Zio, Enrico, 2020. "Fractional Lévy stable motion: Finite difference iterative forecasting model," Chaos, Solitons & Fractals, Elsevier, vol. 133(C).
    2. Jiang, Deyin & Chen, Tianyu & Xie, Juanzhang & Cui, Weimin & Song, Bifeng, 2023. "A mechanical system reliability degradation analysis and remaining life estimation method——With the example of an aircraft hatch lock mechanism," Reliability Engineering and System Safety, Elsevier, vol. 230(C).
    3. Zhang, Ao & Wang, Zhihua & Bao, Rui & Liu, Chengrui & Wu, Qiong & Cao, Shihao, 2023. "A novel failure time estimation method for degradation analysis based on general nonlinear Wiener processes," Reliability Engineering and System Safety, Elsevier, vol. 230(C).
    4. Ta, Yuntian & Li, Yanfeng & Cai, Wenan & Zhang, Qianqian & Wang, Zhijian & Dong, Lei & Du, Wenhua, 2023. "Adaptive staged remaining useful life prediction method based on multi-sensor and multi-feature fusion," Reliability Engineering and System Safety, Elsevier, vol. 231(C).
    5. Sun, Fuqiang & Fu, Fangyou & Liao, Haitao & Xu, Dan, 2020. "Analysis of multivariate dependent accelerated degradation data using a random-effect general Wiener process and D-vine Copula," Reliability Engineering and System Safety, Elsevier, vol. 204(C).
    6. Wang, Xiaolin & Liu, Bin & Zhao, Xiujie, 2021. "A performance-based warranty for products subject to competing hard and soft failures," International Journal of Production Economics, Elsevier, vol. 233(C).
    7. Bahareh Tajiani & Jørn Vatn, 2023. "Adaptive remaining useful life prediction framework with stochastic failure threshold for experimental bearings with different lifetimes under contaminated condition," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 14(5), pages 1756-1777, October.
    8. Xiangang Cao & Pengfei Li & Song Ming, 2021. "Remaining Useful Life Prediction-Based Maintenance Decision Model for Stochastic Deterioration Equipment under Data-Driven," Sustainability, MDPI, vol. 13(15), pages 1-19, July.
    9. Chang, Miaoxin & Huang, Xianzhen & Coolen, Frank PA & Coolen-Maturi, Tahani, 2023. "New reliability model for complex systems based on stochastic processes and survival signature," European Journal of Operational Research, Elsevier, vol. 309(3), pages 1349-1364.
    10. Liang, Qingzhu & Yang, Yinghao & Peng, Changhong, 2023. "A reliability model for systems subject to mutually dependent degradation processes and random shocks under dynamic environments," Reliability Engineering and System Safety, Elsevier, vol. 234(C).
    11. Kim, Sung Wook & Oh, Ki-Yong & Lee, Seungchul, 2022. "Novel informed deep learning-based prognostics framework for on-board health monitoring of lithium-ion batteries," Applied Energy, Elsevier, vol. 315(C).
    12. Pang, Zhenan & Li, Tianmei & Pei, Hong & Si, Xiaosheng, 2023. "A condition-based prognostic approach for age- and state-dependent partially observable nonlinear degrading system," Reliability Engineering and System Safety, Elsevier, vol. 230(C).
    13. Zhang, Jian-Xun & Si, Xiao-Sheng & Du, Dang-Bo & Hu, Chang-Hua & Hu, Chen, 2020. "A novel iterative approach of lifetime estimation for standby systems with deteriorating spare parts," Reliability Engineering and System Safety, Elsevier, vol. 201(C).
    14. Uwe Küchler & Michael Sørensen, 2010. "A simple estimator for discrete-time samples from affine stochastic delay differential equations," Statistical Inference for Stochastic Processes, Springer, vol. 13(2), pages 125-132, June.
    15. Chatenet, Q. & Remy, E. & Gagnon, M. & Fouladirad, M. & Tahan, A.S., 2021. "Modeling cavitation erosion using non-homogeneous gamma process," Reliability Engineering and System Safety, Elsevier, vol. 213(C).
    16. Zhang, Nan & Cai, Kaiquan & Zhang, Jun & Wang, Tian, 2022. "A condition-based maintenance policy considering failure dependence and imperfect inspection for a two-component system," Reliability Engineering and System Safety, Elsevier, vol. 217(C).
    17. Xiaojia Wang & Ting Huang & Keyu Zhu & Xibin Zhao, 2022. "LSTM-Based Broad Learning System for Remaining Useful Life Prediction," Mathematics, MDPI, vol. 10(12), pages 1-13, June.
    18. Zhou, Shirong & Tang, Yincai & Xu, Ancha, 2021. "A generalized Wiener process with dependent degradation rate and volatility and time-varying mean-to-variance ratio," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    19. Xiaodong Xu & Chuanqiang Yu & Shengjin Tang & Xiaoyan Sun & Xiaosheng Si & Lifeng Wu, 2019. "Remaining Useful Life Prediction of Lithium-Ion Batteries Based on Wiener Processes with Considering the Relaxation Effect," Energies, MDPI, vol. 12(9), pages 1-17, May.
    20. Wang, Xiaofei & Wang, Bing Xing & Jiang, Pei Hua & Hong, Yili, 2020. "Accurate reliability inference based on Wiener process with random effects for degradation data," Reliability Engineering and System Safety, Elsevier, vol. 193(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:risrel:v:236:y:2022:i:1:p:114-124. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.