Prognostics of fractional degradation processes with state-dependent delay
Author
Abstract
Suggested Citation
DOI: 10.1177/1748006X211028090
Download full text from publisher
References listed on IDEAS
- Küchler, Uwe & Platen, Eckhard, 2000.
"Strong discrete time approximation of stochastic differential equations with time delay,"
Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 54(1), pages 189-205.
- Küchler, U. & Platen, E., 1999. "Strong discrete time approximation of Stochastic Differential Equations with Time Delay," SFB 373 Discussion Papers 1999,25, Humboldt University of Berlin, Interdisciplinary Research Project 373: Quantification and Simulation of Economic Processes.
- Uwe Kuchler & Eckhard Platen, 2000. "Strong Discrete Time Approximation of Stochastic Differential Equations with Time Delay," Research Paper Series 44, Quantitative Finance Research Centre, University of Technology, Sydney.
- Yongbin Liu & Bing He & Fang Liu & Siliang Lu & Yilei Zhao & Jiwen Zhao, 2016. "Remaining Useful Life Prediction of Rolling Bearings Using PSR, JADE, and Extreme Learning Machine," Mathematical Problems in Engineering, Hindawi, vol. 2016, pages 1-13, April.
- Zhang, Zhengxin & Si, Xiaosheng & Hu, Changhua & Lei, Yaguo, 2018. "Degradation data analysis and remaining useful life estimation: A review on Wiener-process-based methods," European Journal of Operational Research, Elsevier, vol. 271(3), pages 775-796.
- Song, Wanqing & Cattani, Carlo & Chi, Chi-Hung, 2020. "Multifractional Brownian motion and quantum-behaved particle swarm optimization for short term power load forecasting: An integrated approach," Energy, Elsevier, vol. 194(C).
- Song Wanqing & Xiaoxian Chen & Carlo Cattani & Enrico Zio, 2020. "Multifractional Brownian Motion and Quantum-Behaved Partial Swarm Optimization for Bearing Degradation Forecasting," Complexity, Hindawi, vol. 2020, pages 1-9, January.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Khoa Tran & Hai-Canh Vu & Lam Pham & Nassim Boudaoud & Ho-Si-Hung Nguyen, 2024. "Robust-MBDL: A Robust Multi-Branch Deep-Learning-Based Model for Remaining Useful Life Prediction of Rotating Machines," Mathematics, MDPI, vol. 12(10), pages 1-25, May.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Liu, He & Song, Wanqing & Li, Ming & Kudreyko, Aleksey & Zio, Enrico, 2020. "Fractional Lévy stable motion: Finite difference iterative forecasting model," Chaos, Solitons & Fractals, Elsevier, vol. 133(C).
- Wang, Xiaolin & Liu, Bin & Zhao, Xiujie, 2021. "A performance-based warranty for products subject to competing hard and soft failures," International Journal of Production Economics, Elsevier, vol. 233(C).
- Xiangang Cao & Pengfei Li & Song Ming, 2021. "Remaining Useful Life Prediction-Based Maintenance Decision Model for Stochastic Deterioration Equipment under Data-Driven," Sustainability, MDPI, vol. 13(15), pages 1-19, July.
- Liang, Qingzhu & Yang, Yinghao & Peng, Changhong, 2023. "A reliability model for systems subject to mutually dependent degradation processes and random shocks under dynamic environments," Reliability Engineering and System Safety, Elsevier, vol. 234(C).
- Zhang, Jian-Xun & Si, Xiao-Sheng & Du, Dang-Bo & Hu, Chang-Hua & Hu, Chen, 2020. "A novel iterative approach of lifetime estimation for standby systems with deteriorating spare parts," Reliability Engineering and System Safety, Elsevier, vol. 201(C).
- Uwe Küchler & Michael Sørensen, 2010. "A simple estimator for discrete-time samples from affine stochastic delay differential equations," Statistical Inference for Stochastic Processes, Springer, vol. 13(2), pages 125-132, June.
- Zhang, Nan & Cai, Kaiquan & Zhang, Jun & Wang, Tian, 2022. "A condition-based maintenance policy considering failure dependence and imperfect inspection for a two-component system," Reliability Engineering and System Safety, Elsevier, vol. 217(C).
- Xiaojia Wang & Ting Huang & Keyu Zhu & Xibin Zhao, 2022. "LSTM-Based Broad Learning System for Remaining Useful Life Prediction," Mathematics, MDPI, vol. 10(12), pages 1-13, June.
- Zhou, Shirong & Tang, Yincai & Xu, Ancha, 2021. "A generalized Wiener process with dependent degradation rate and volatility and time-varying mean-to-variance ratio," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
- Xiaodong Xu & Chuanqiang Yu & Shengjin Tang & Xiaoyan Sun & Xiaosheng Si & Lifeng Wu, 2019. "Remaining Useful Life Prediction of Lithium-Ion Batteries Based on Wiener Processes with Considering the Relaxation Effect," Energies, MDPI, vol. 12(9), pages 1-17, May.
- Wang, Xiaofei & Wang, Bing Xing & Jiang, Pei Hua & Hong, Yili, 2020. "Accurate reliability inference based on Wiener process with random effects for degradation data," Reliability Engineering and System Safety, Elsevier, vol. 193(C).
- Ma, Jie & Cai, Li & Liao, Guobo & Yin, Hongpeng & Si, Xiaosheng & Zhang, Peng, 2023. "A multi-phase Wiener process-based degradation model with imperfect maintenance activities," Reliability Engineering and System Safety, Elsevier, vol. 232(C).
- ChiachÃo, Juan & Jalón, MarÃa L. & ChiachÃo, Manuel & Kolios, Athanasios, 2020. "A Markov chains prognostics framework for complex degradation processes," Reliability Engineering and System Safety, Elsevier, vol. 195(C).
- Fang, Chen & Cui, Lirong, 2021. "Balanced Systems by Considering Multi-state Competing Risks Under Degradation Processes," Reliability Engineering and System Safety, Elsevier, vol. 205(C).
- Küchler, Uwe & Platen, Eckhard, 2002.
"Weak discrete time approximation of stochastic differential equations with time delay,"
Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 59(6), pages 497-507.
- Uwe Kuchler & Eckhard Platen, 2001. "Weak Discrete Time Approximation of Stochastic Differential Equations with Time Delay," Research Paper Series 50, Quantitative Finance Research Centre, University of Technology, Sydney.
- Küchler, Uwe & Platen, Eckhard, 2001. "Weak discrete time approximation of stochastic differential equations with time delay," SFB 373 Discussion Papers 2001,30, Humboldt University of Berlin, Interdisciplinary Research Project 373: Quantification and Simulation of Economic Processes.
- Yuan, Chenggui & Mao, Xuerong, 2004. "Convergence of the Euler–Maruyama method for stochastic differential equations with Markovian switching," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 64(2), pages 223-235.
- Hu, Rong, 2020. "Almost sure exponential stability of the Milstein-type schemes for stochastic delay differential equations," Chaos, Solitons & Fractals, Elsevier, vol. 131(C).
- Yves Langeron & Khac Tuan Huynh & Antoine Grall, 2021. "A root location-based framework for degradation modeling of dynamic systems with predictive maintenance perspective," Journal of Risk and Reliability, , vol. 235(2), pages 253-267, April.
- Eckhard Platen, 2020. "Stochastic Modelling of the COVID-19 Epidemic," Research Paper Series 409, Quantitative Finance Research Centre, University of Technology, Sydney.
- Wang, Liying & Song, Yushuang & Zhang, Wenhua & Ling, Xiaoliang, 2023. "Condition-based inspection, component reallocation and replacement optimization of two-component interchangeable series system," Reliability Engineering and System Safety, Elsevier, vol. 230(C).
More about this item
Keywords
Remaining useful life; state-dependent delay; nonlinearity; fractional diffusion; Euler approximation;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:risrel:v:236:y:2022:i:1:p:114-124. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.