IDEAS home Printed from https://ideas.repec.org/a/eee/matcom/v64y2004i2p223-235.html
   My bibliography  Save this article

Convergence of the Euler–Maruyama method for stochastic differential equations with Markovian switching

Author

Listed:
  • Yuan, Chenggui
  • Mao, Xuerong

Abstract

Stochastic differential equations with Markovian switching (SDEwMSs), one of the important classes of hybrid systems, have been used to model many physical systems that are subject to frequent unpredictable structural changes. The research in this area has been both theoretical and applied. Most of SDEwMSs do not have explicit solutions so it is important to have numerical solutions. It is surprising that there are not any numerical methods established for SDEwMSs yet, although the numerical methods for stochastic differential equations (SDEs) have been well studied. The main aim of this paper is to develop a numerical scheme for SDEwMSs and estimate the error between the numerical and exact solutions. This is the first paper in this direction and the emphasis lies on the error analysis.

Suggested Citation

  • Yuan, Chenggui & Mao, Xuerong, 2004. "Convergence of the Euler–Maruyama method for stochastic differential equations with Markovian switching," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 64(2), pages 223-235.
  • Handle: RePEc:eee:matcom:v:64:y:2004:i:2:p:223-235
    DOI: 10.1016/j.matcom.2003.09.001
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378475403001344
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.matcom.2003.09.001?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Küchler, Uwe & Platen, Eckhard, 2000. "Strong discrete time approximation of stochastic differential equations with time delay," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 54(1), pages 189-205.
    2. O. L. V. Costa & E. K. Boukas, 1998. "Necessary and Sufficient Condition for Robust Stability and Stabilizability of Continuous-Time Linear Systems with Markovian Jumps," Journal of Optimization Theory and Applications, Springer, vol. 99(2), pages 359-379, November.
    3. Mao, Xuerong, 1999. "Stability of stochastic differential equations with Markovian switching," Stochastic Processes and their Applications, Elsevier, vol. 79(1), pages 45-67, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Cañada, Héctor & Romera, Rosario, 2009. "Controlled diffusion processes with markovian switchings for modeling dynamical engineering systems," DES - Working Papers. Statistics and Econometrics. WS ws093714, Universidad Carlos III de Madrid. Departamento de Estadística.
    2. Yang Li & Taitao Feng & Yaolei Wang & Yifei Xin, 2021. "A High Order Accurate and Effective Scheme for Solving Markovian Switching Stochastic Models," Mathematics, MDPI, vol. 9(6), pages 1-15, March.
    3. Zhang, Zhenzhong & Zhou, Tiandao & Jin, Xinghu & Tong, Jinying, 2020. "Convergence of the Euler–Maruyama method for CIR model with Markovian switching," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 177(C), pages 192-210.
    4. Romuald Hervé Momeya & Manuel Morales, 2016. "On the Price of Risk of the Underlying Markov Chain in a Regime-Switching Exponential Lévy Model," Methodology and Computing in Applied Probability, Springer, vol. 18(1), pages 107-135, March.
    5. Gao, Xiangyu & Liu, Yi & Wang, Yanxia & Yang, Hongfu & Yang, Maosong, 2021. "Tamed-Euler method for nonlinear switching diffusion systems with locally Hölder diffusion coefficients," Chaos, Solitons & Fractals, Elsevier, vol. 151(C).
    6. Fan, Zhencheng, 2017. "Convergence of numerical solutions to stochastic differential equations with Markovian switching," Applied Mathematics and Computation, Elsevier, vol. 315(C), pages 176-187.
    7. Ouyang, Mengqian & Li, Xiaoyue, 2015. "Permanence and asymptotical behavior of stochastic prey–predator system with Markovian switching," Applied Mathematics and Computation, Elsevier, vol. 266(C), pages 539-559.
    8. Cañada, Héctor & Romera, Rosario, 2012. "Controlled diffusion processes with Markovian switchings for modeling dynamical engineering systems," European Journal of Operational Research, Elsevier, vol. 221(3), pages 614-624.
    9. Xinghu Jin & Tian Shen & Zhonggen Su & Yuzhen Tan, 2025. "The Euler-Maruyama Approximation of State-Dependent Regime Switching Diffusions," Journal of Theoretical Probability, Springer, vol. 38(1), pages 1-40, March.
    10. Xinghu Jin & Tian Shen & Zhonggen Su, 2023. "Using Stein’s Method to Analyze Euler–Maruyama Approximations of Regime-Switching Jump Diffusion Processes," Journal of Theoretical Probability, Springer, vol. 36(3), pages 1797-1828, September.
    11. Zhao, Jingjun & Yi, Yulian & Xu, Yang, 2021. "Strong convergence of explicit schemes for highly nonlinear stochastic differential equations with Markovian switching," Applied Mathematics and Computation, Elsevier, vol. 398(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. E. K. Boukas, 2004. "Nonfragile Controller Design for Linear Markovian Jumping Parameters Systems," Journal of Optimization Theory and Applications, Springer, vol. 122(2), pages 241-255, August.
    2. Song, Gongfei & Zhang, Zimeng & Zhu, Yanan & Li, Tao, 2022. "Discrete-time control for highly nonlinear neutral stochastic delay systems," Applied Mathematics and Computation, Elsevier, vol. 430(C).
    3. Mao, Xuerong & Shen, Yi & Yuan, Chenggui, 2008. "Almost surely asymptotic stability of neutral stochastic differential delay equations with Markovian switching," Stochastic Processes and their Applications, Elsevier, vol. 118(8), pages 1385-1406, August.
    4. E.K. Boukas & Z.K. Liu & F. Al-Sunni, 2003. "Guaranteed Cost Control of a Markov Jump Linear Uncertain System Using a Time-Multiplied Cost Function," Journal of Optimization Theory and Applications, Springer, vol. 116(1), pages 183-204, January.
    5. Uwe Küchler & Michael Sørensen, 2010. "A simple estimator for discrete-time samples from affine stochastic delay differential equations," Statistical Inference for Stochastic Processes, Springer, vol. 13(2), pages 125-132, June.
    6. Xi, Fubao, 2004. "Stability of a random diffusion with nonlinear drift," Statistics & Probability Letters, Elsevier, vol. 68(3), pages 273-286, July.
    7. Küchler, Uwe & Platen, Eckhard, 2002. "Weak discrete time approximation of stochastic differential equations with time delay," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 59(6), pages 497-507.
    8. Xu, Jiang & Chen, Tao & Wen, Xiangdan, 2021. "Analysis of a Bailey–Dietz model for vector-borne disease under regime switching," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 580(C).
    9. Zhou, Qi & Yao, Deyin & Wang, Jiahui & Wu, Chengwei, 2016. "Robust control of uncertain semi-Markovian jump systems using sliding mode control method," Applied Mathematics and Computation, Elsevier, vol. 286(C), pages 72-87.
    10. Hu, Rong, 2020. "Almost sure exponential stability of the Milstein-type schemes for stochastic delay differential equations," Chaos, Solitons & Fractals, Elsevier, vol. 131(C).
    11. Eckhard Platen, 2020. "Stochastic Modelling of the COVID-19 Epidemic," Research Paper Series 409, Quantitative Finance Research Centre, University of Technology, Sydney.
    12. Ye, Zhiyong & Zhang, He & Zhang, Hongyu & Zhang, Hua & Lu, Guichen, 2015. "Mean square stabilization and mean square exponential stabilization of stochastic BAM neural networks with Markovian jumping parameters," Chaos, Solitons & Fractals, Elsevier, vol. 73(C), pages 156-165.
    13. Ma, Yuechao & Chen, Hui, 2015. "Reliable finite-time H∞ filtering for discrete time-delay systems with Markovian jump and randomly occurring nonlinearities," Applied Mathematics and Computation, Elsevier, vol. 268(C), pages 897-915.
    14. Mahmoudi, Fatemeh & Tahmasebi, Mahdieh, 2022. "The convergence of a numerical scheme for additive fractional stochastic delay equations with H>12," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 191(C), pages 219-231.
    15. Luo, Jiaowan & Liu, Kai, 2008. "Stability of infinite dimensional stochastic evolution equations with memory and Markovian jumps," Stochastic Processes and their Applications, Elsevier, vol. 118(5), pages 864-895, May.
    16. Uwe Küchler & Eckhard Platen, 2007. "Time Delay and Noise Explaining Cyclical Fluctuations in Prices of Commodities," Research Paper Series 195, Quantitative Finance Research Centre, University of Technology, Sydney.
    17. You, Surong & Mao, Wei & Mao, Xuerong & Hu, Liangjian, 2015. "Analysis on exponential stability of hybrid pantograph stochastic differential equations with highly nonlinear coefficients," Applied Mathematics and Computation, Elsevier, vol. 263(C), pages 73-83.
    18. Wenhai Qi & Yonggui Kao & Xianwen Gao, 2017. "Further results on finite-time stabilisation for stochastic Markovian jump systems with time-varying delay," International Journal of Systems Science, Taylor & Francis Journals, vol. 48(14), pages 2967-2975, October.
    19. E. K. Boukas, 2004. "Nonfragile Robust Controller for Linear Markovian Jumping Parameter Systems with Multiplicative Brownian Disturbance," Journal of Optimization Theory and Applications, Springer, vol. 122(3), pages 455-469, September.
    20. Xiaopeng Xi & Donghua Zhou, 2022. "Prognostics of fractional degradation processes with state-dependent delay," Journal of Risk and Reliability, , vol. 236(1), pages 114-124, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:matcom:v:64:y:2004:i:2:p:223-235. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/mathematics-and-computers-in-simulation/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.