Practical stability of the analytical and numerical solutions of stochastic delay differential equations driven by G-Brownian motion via some novel techniques
Author
Abstract
Suggested Citation
DOI: 10.1016/j.chaos.2024.114920
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Yuan, Haiyan & Zhu, Quanxin, 2023. "Discrete-time feedback stabilization for neutral stochastic functional differential equations driven by G-Lévy process," Chaos, Solitons & Fractals, Elsevier, vol. 166(C).
- Eckhard Platen, 1999. "An Introduction to Numerical Methods for Stochastic Differential Equations," Research Paper Series 6, Quantitative Finance Research Centre, University of Technology, Sydney.
- Küchler, Uwe & Platen, Eckhard, 2000.
"Strong discrete time approximation of stochastic differential equations with time delay,"
Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 54(1), pages 189-205.
- Küchler, U. & Platen, E., 1999. "Strong discrete time approximation of Stochastic Differential Equations with Time Delay," SFB 373 Discussion Papers 1999,25, Humboldt University of Berlin, Interdisciplinary Research Project 373: Quantification and Simulation of Economic Processes.
- Uwe Kuchler & Eckhard Platen, 2000. "Strong Discrete Time Approximation of Stochastic Differential Equations with Time Delay," Research Paper Series 44, Quantitative Finance Research Centre, University of Technology, Sydney.
- Ma, Li & Li, Yujing & Zhu, Quanxin, 2023. "Stability analysis for a class of stochastic delay nonlinear systems driven by G-Lévy Process," Statistics & Probability Letters, Elsevier, vol. 195(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Küchler, Uwe & Platen, Eckhard, 2002.
"Weak discrete time approximation of stochastic differential equations with time delay,"
Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 59(6), pages 497-507.
- Uwe Kuchler & Eckhard Platen, 2001. "Weak Discrete Time Approximation of Stochastic Differential Equations with Time Delay," Research Paper Series 50, Quantitative Finance Research Centre, University of Technology, Sydney.
- Küchler, Uwe & Platen, Eckhard, 2001. "Weak discrete time approximation of stochastic differential equations with time delay," SFB 373 Discussion Papers 2001,30, Humboldt University of Berlin, Interdisciplinary Research Project 373: Quantification and Simulation of Economic Processes.
- Mikulevicius, Remigijus & Zhang, Changyong, 2011. "On the rate of convergence of weak Euler approximation for nondegenerate SDEs driven by Lévy processes," Stochastic Processes and their Applications, Elsevier, vol. 121(8), pages 1720-1748, August.
- Xia, Mingli & Liu, Linna & Fang, Jianyin & Qu, Boyang, 2024. "Exponentially weighted input-to-state stability of stochastic differential systems via event-triggered impulsive control," Chaos, Solitons & Fractals, Elsevier, vol. 182(C).
- Uwe Küchler & Michael Sørensen, 2010. "A simple estimator for discrete-time samples from affine stochastic delay differential equations," Statistical Inference for Stochastic Processes, Springer, vol. 13(2), pages 125-132, June.
- Wenli Wang & Junyan Bao, 2024. "Existence Results for Nonlinear Impulsive System with Causal Operators," Mathematics, MDPI, vol. 12(17), pages 1-14, September.
- I. A. Lubashevsky & R. Mahnke & M. Hajimahmoodzadeh & A. Katsnelson, 2005. "Long-lived states of oscillator chains with dynamical traps," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 44(1), pages 63-70, March.
- Yuan, Chenggui & Mao, Xuerong, 2004. "Convergence of the Euler–Maruyama method for stochastic differential equations with Markovian switching," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 64(2), pages 223-235.
- Konakov Valentin & Mammen Enno, 2002. "Edgeworth type expansions for Euler schemes for stochastic differential equations," Monte Carlo Methods and Applications, De Gruyter, vol. 8(3), pages 271-286, December.
- Hu, Rong, 2020. "Almost sure exponential stability of the Milstein-type schemes for stochastic delay differential equations," Chaos, Solitons & Fractals, Elsevier, vol. 131(C).
- Eckhard Platen, 2020. "Stochastic Modelling of the COVID-19 Epidemic," Research Paper Series 409, Quantitative Finance Research Centre, University of Technology, Sydney.
- Kawar Badie Mahmood & Adil Sufian Husain, 2021. "Bernoulli’s Number One Solution for Stochastic Equilibrium," International Journal of Science and Business, IJSAB International, vol. 5(8), pages 194-201.
- Mahmoudi, Fatemeh & Tahmasebi, Mahdieh, 2022. "The convergence of a numerical scheme for additive fractional stochastic delay equations with H>12," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 191(C), pages 219-231.
- Bruti-Liberati Nicola & Nikitopoulos-Sklibosios Christina & Platen Eckhard, 2006. "First Order Strong Approximations of Jump Diffusions," Monte Carlo Methods and Applications, De Gruyter, vol. 12(3), pages 191-209, October.
- Gao, Jiti, 2002. "Modeling long-range dependent Gaussian processes with application in continuous-time financial models," MPRA Paper 11973, University Library of Munich, Germany, revised 18 Sep 2003.
- Ömür Ugur, 2008. "An Introduction to Computational Finance," World Scientific Books, World Scientific Publishing Co. Pte. Ltd., number p556, February.
- Küchler, Uwe & Platen, Eckhard, 2000.
"Strong discrete time approximation of stochastic differential equations with time delay,"
Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 54(1), pages 189-205.
- Küchler, U. & Platen, E., 1999. "Strong discrete time approximation of Stochastic Differential Equations with Time Delay," SFB 373 Discussion Papers 1999,25, Humboldt University of Berlin, Interdisciplinary Research Project 373: Quantification and Simulation of Economic Processes.
- Uwe Kuchler & Eckhard Platen, 2000. "Strong Discrete Time Approximation of Stochastic Differential Equations with Time Delay," Research Paper Series 44, Quantitative Finance Research Centre, University of Technology, Sydney.
- Uwe Küchler & Eckhard Platen, 2007. "Time Delay and Noise Explaining Cyclical Fluctuations in Prices of Commodities," Research Paper Series 195, Quantitative Finance Research Centre, University of Technology, Sydney.
- Nicola Bruti-Liberati, 2007. "Numerical Solution of Stochastic Differential Equations with Jumps in Finance," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 1, July-Dece.
- Zhengqi Ma & Shoucheng Yuan & Kexin Meng & Shuli Mei, 2023. "Mean-Square Stability of Uncertain Delayed Stochastic Systems Driven by G-Brownian Motion," Mathematics, MDPI, vol. 11(10), pages 1-16, May.
- Miccichè, S., 2023. "A numerical recipe for the computation of stationary stochastic processes’ autocorrelation function," Chaos, Solitons & Fractals, Elsevier, vol. 171(C).
More about this item
Keywords
G-Brownian motion; Stochastic delay differential equation; Euler–Maruyama method; PMS exponential stability;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:183:y:2024:i:c:s0960077924004727. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.