IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v183y2024ics0960077924004727.html
   My bibliography  Save this article

Practical stability of the analytical and numerical solutions of stochastic delay differential equations driven by G-Brownian motion via some novel techniques

Author

Listed:
  • Yuan, Haiyan
  • Zhu, Quanxin

Abstract

In this paper, we focus on stochastic delay differential equations in the G-framework (G-SDDEs). We introduce the practical stability to examine whether the performance of G-SDDE near an unstable equilibrium point is acceptable. We establish a new generalized Gronwall inequality based on which we prove the practical mean-square (PMS) exponential stability of G-SDDE. We also establish the stability equivalence between the discrete and the continuous EM approximations for G-SDDE and then show that the continuous EM approximation can preserve the PMS exponential stability of G-SDDE. One numerical experiment is conducted to confirm our theoretical results.

Suggested Citation

  • Yuan, Haiyan & Zhu, Quanxin, 2024. "Practical stability of the analytical and numerical solutions of stochastic delay differential equations driven by G-Brownian motion via some novel techniques," Chaos, Solitons & Fractals, Elsevier, vol. 183(C).
  • Handle: RePEc:eee:chsofr:v:183:y:2024:i:c:s0960077924004727
    DOI: 10.1016/j.chaos.2024.114920
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077924004727
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2024.114920?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yuan, Haiyan & Zhu, Quanxin, 2023. "Discrete-time feedback stabilization for neutral stochastic functional differential equations driven by G-Lévy process," Chaos, Solitons & Fractals, Elsevier, vol. 166(C).
    2. Eckhard Platen, 1999. "An Introduction to Numerical Methods for Stochastic Differential Equations," Research Paper Series 6, Quantitative Finance Research Centre, University of Technology, Sydney.
    3. Küchler, Uwe & Platen, Eckhard, 2000. "Strong discrete time approximation of stochastic differential equations with time delay," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 54(1), pages 189-205.
    4. Ma, Li & Li, Yujing & Zhu, Quanxin, 2023. "Stability analysis for a class of stochastic delay nonlinear systems driven by G-Lévy Process," Statistics & Probability Letters, Elsevier, vol. 195(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Küchler, Uwe & Platen, Eckhard, 2002. "Weak discrete time approximation of stochastic differential equations with time delay," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 59(6), pages 497-507.
    2. Mikulevicius, Remigijus & Zhang, Changyong, 2011. "On the rate of convergence of weak Euler approximation for nondegenerate SDEs driven by Lévy processes," Stochastic Processes and their Applications, Elsevier, vol. 121(8), pages 1720-1748, August.
    3. Xia, Mingli & Liu, Linna & Fang, Jianyin & Qu, Boyang, 2024. "Exponentially weighted input-to-state stability of stochastic differential systems via event-triggered impulsive control," Chaos, Solitons & Fractals, Elsevier, vol. 182(C).
    4. I. Lubashevsky & M. Hajimahmoodzadeh & A. Katsnelson & P. Wagner, 2003. "Noised-induced phase transition in an oscillatory system with dynamical traps," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 36(1), pages 115-118, November.
    5. Ding-Geng Chen & Haipeng Gao & Chuanshu Ji, 2021. "Bayesian Inference for Stochastic Cusp Catastrophe Model with Partially Observed Data," Mathematics, MDPI, vol. 9(24), pages 1-9, December.
    6. Uwe Küchler & Michael Sørensen, 2010. "A simple estimator for discrete-time samples from affine stochastic delay differential equations," Statistical Inference for Stochastic Processes, Springer, vol. 13(2), pages 125-132, June.
    7. Wenli Wang & Junyan Bao, 2024. "Existence Results for Nonlinear Impulsive System with Causal Operators," Mathematics, MDPI, vol. 12(17), pages 1-14, September.
    8. Shuaiqiang Liu & Lech A. Grzelak & Cornelis W. Oosterlee, 2022. "The Seven-League Scheme: Deep Learning for Large Time Step Monte Carlo Simulations of Stochastic Differential Equations," Risks, MDPI, vol. 10(3), pages 1-27, February.
    9. I. A. Lubashevsky & R. Mahnke & M. Hajimahmoodzadeh & A. Katsnelson, 2005. "Long-lived states of oscillator chains with dynamical traps," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 44(1), pages 63-70, March.
    10. Yuan, Chenggui & Mao, Xuerong, 2004. "Convergence of the Euler–Maruyama method for stochastic differential equations with Markovian switching," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 64(2), pages 223-235.
    11. Konakov Valentin & Mammen Enno, 2002. "Edgeworth type expansions for Euler schemes for stochastic differential equations," Monte Carlo Methods and Applications, De Gruyter, vol. 8(3), pages 271-286, December.
    12. Gao, Jianfang & Liang, Hui & Ma, Shufang, 2019. "Strong convergence of the semi-implicit Euler method for nonlinear stochastic Volterra integral equations with constant delay," Applied Mathematics and Computation, Elsevier, vol. 348(C), pages 385-398.
    13. Hu, Rong, 2020. "Almost sure exponential stability of the Milstein-type schemes for stochastic delay differential equations," Chaos, Solitons & Fractals, Elsevier, vol. 131(C).
    14. Marco Ferrante & Elisabetta Ferraris & Carles Rovira, 2016. "On a stochastic epidemic SEIHR model and its diffusion approximation," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 25(3), pages 482-502, September.
    15. Eckhard Platen, 2020. "Stochastic Modelling of the COVID-19 Epidemic," Research Paper Series 409, Quantitative Finance Research Centre, University of Technology, Sydney.
    16. Kawar Badie Mahmood & Adil Sufian Husain, 2021. "Bernoulli’s Number One Solution for Stochastic Equilibrium," International Journal of Science and Business, IJSAB International, vol. 5(8), pages 194-201.
    17. Küchler, Uwe & Platen, Eckhard, 2000. "Strong discrete time approximation of stochastic differential equations with time delay," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 54(1), pages 189-205.
    18. Wei Zhang & Hui Min, 2021. "Weak Convergence Analysis and Improved Error Estimates for Decoupled Forward-Backward Stochastic Differential Equations," Mathematics, MDPI, vol. 9(8), pages 1-15, April.
    19. Mahmoudi, Fatemeh & Tahmasebi, Mahdieh, 2022. "The convergence of a numerical scheme for additive fractional stochastic delay equations with H>12," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 191(C), pages 219-231.
    20. Bruti-Liberati Nicola & Nikitopoulos-Sklibosios Christina & Platen Eckhard, 2006. "First Order Strong Approximations of Jump Diffusions," Monte Carlo Methods and Applications, De Gruyter, vol. 12(3), pages 191-209, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:183:y:2024:i:c:s0960077924004727. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.