Reducing water productivity gap by optimizing irrigation regime for winter wheat-summer maize system in the North China Plain
Author
Abstract
Suggested Citation
DOI: 10.1016/j.agwat.2023.108229
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Zeng, Ruiyun & Yao, Fengmei & Zhang, Sha & Yang, Shanshan & Bai, Yun & Zhang, Jiahua & Wang, Jingwen & Wang, Xin, 2021. "Assessing the effects of precipitation and irrigation on winter wheat yield and water productivity in North China Plain," Agricultural Water Management, Elsevier, vol. 256(C).
- Xu, Jiatun & Cai, Huanjie & Wang, Xiaoyun & Ma, Chenguang & Lu, Yajun & Ding, Yibo & Wang, Xiaowen & Chen, Hui & Wang, Yunfei & Saddique, Qaisar, 2020. "Exploring optimal irrigation and nitrogen fertilization in a winter wheat-summer maize rotation system for improving crop yield and reducing water and nitrogen leaching," Agricultural Water Management, Elsevier, vol. 228(C).
- Zhang, Xiying & Qin, Wenli & Chen, Suying & Shao, Liwei & Sun, Hongyong, 2017. "Responses of yield and WUE of winter wheat to water stress during the past three decades—A case study in the North China Plain," Agricultural Water Management, Elsevier, vol. 179(C), pages 47-54.
- Ma, Shou-Chen & Duan, Ai-Wang & Wang, Rui & Guan, Zhong-Mei & Yang, Shen-Jiao & Ma, Shou-Tian & Shao, Yun, 2015. "Root-sourced signal and photosynthetic traits, dry matter accumulation and remobilization, and yield stability in winter wheat as affected by regulated deficit irrigation," Agricultural Water Management, Elsevier, vol. 148(C), pages 123-129.
- Iqbal, M. Anjum & Shen, Yanjun & Stricevic, Ruzica & Pei, Hongwei & Sun, Hongyoung & Amiri, Ebrahim & Penas, Angel & del Rio, Sara, 2014. "Evaluation of the FAO AquaCrop model for winter wheat on the North China Plain under deficit irrigation from field experiment to regional yield simulation," Agricultural Water Management, Elsevier, vol. 135(C), pages 61-72.
- Zhao, Jie & Han, Tong & Wang, Chong & Jia, Hao & Worqlul, Abeyou W. & Norelli, Nicole & Zeng, Zhaohai & Chu, Qingquan, 2020. "Optimizing irrigation strategies to synchronously improve the yield and water productivity of winter wheat under interannual precipitation variability in the North China Plain," Agricultural Water Management, Elsevier, vol. 240(C).
- Yan, Zhenxing & Gao, Chao & Ren, Yujie & Zong, Rui & Ma, Yuzhao & Li, Quanqi, 2017. "Effects of pre-sowing irrigation and straw mulching on the grain yield and water use efficiency of summer maize in the North China Plain," Agricultural Water Management, Elsevier, vol. 186(C), pages 21-28.
- Wang, Shiquan & Xiong, Jinran & Yang, Boyuan & Yang, Xiaolin & Du, Taisheng & Steenhuis, Tammo S. & Siddique, Kadambot H.M. & Kang, Shaozhong, 2023. "Diversified crop rotations reduce groundwater use and enhance system resilience," Agricultural Water Management, Elsevier, vol. 276(C).
- Wang, Xiaowen & Li, Liang & Ding, Yibo & Xu, Jiatun & Wang, Yunfei & Zhu, Yan & Wang, Xiaoyun & Cai, Huanjie, 2021. "Adaptation of winter wheat varieties and irrigation patterns under future climate change conditions in Northern China," Agricultural Water Management, Elsevier, vol. 243(C).
- de Jong van Lier, Quirijn & Wendroth, Ole & van Dam, Jos C., 2015. "Prediction of winter wheat yield with the SWAP model using pedotransfer functions: An evaluation of sensitivity, parameterization and prediction accuracy," Agricultural Water Management, Elsevier, vol. 154(C), pages 29-42.
- Attia, Ahmed & Rajan, Nithya & Xue, Qingwu & Nair, Shyam & Ibrahim, Amir & Hays, Dirk, 2016. "Application of DSSAT-CERES-Wheat model to simulate winter wheat response to irrigation management in the Texas High Plains," Agricultural Water Management, Elsevier, vol. 165(C), pages 50-60.
- Fang, Qin & Wang, Yanzhe & Uwimpaye, Fasilate & Yan, Zongzheng & Li, Lu & Liu, Xiuwei & Shao, Liwei, 2021. "Pre-sowing soil water conditions and water conservation measures affecting the yield and water productivity of summer maize," Agricultural Water Management, Elsevier, vol. 245(C).
- van Oort, P.A.J. & Wang, G. & Vos, J. & Meinke, H. & Li, B.G. & Huang, J.K. & van der Werf, W., 2016. "Towards groundwater neutral cropping systems in the Alluvial Fans of the North China Plain," Agricultural Water Management, Elsevier, vol. 165(C), pages 131-140.
- Mu, Qing & Cai, Huanjie & Sun, Shikun & Wen, Shanshan & Xu, Jiatun & Dong, Mengqi & Saddique, Qaisar, 2021. "The physiological response of winter wheat under short-term drought conditions and the sensitivity of different indices to soil water changes," Agricultural Water Management, Elsevier, vol. 243(C).
- Xuhui Wang & Christoph Müller & Joshua Elliot & Nathaniel D. Mueller & Philippe Ciais & Jonas Jägermeyr & James Gerber & Patrice Dumas & Chenzhi Wang & Hui Yang & Laurent Li & Delphine Deryng & Christ, 2021. "Global irrigation contribution to wheat and maize yield," Nature Communications, Nature, vol. 12(1), pages 1-8, December.
- Sun, Hongyong & Zhang, Xiying & Liu, Xiujing & Liu, Xiuwei & Shao, Liwei & Chen, Suying & Wang, Jintao & Dong, Xinliang, 2019. "Impact of different cropping systems and irrigation schedules on evapotranspiration, grain yield and groundwater level in the North China Plain," Agricultural Water Management, Elsevier, vol. 211(C), pages 202-209.
- Zhang, Chao & Xie, Ziang & Wang, Qiaojuan & Tang, Min & Feng, Shaoyuan & Cai, Huanjie, 2022. "AquaCrop modeling to explore optimal irrigation of winter wheat for improving grain yield and water productivity," Agricultural Water Management, Elsevier, vol. 266(C).
- Fan, Yanli & Liu, Junmei & Zhao, Jiatao & Ma, Yuzhao & Li, Quanqi, 2019. "Effects of delayed irrigation during the jointing stage on the photosynthetic characteristics and yield of winter wheat under different planting patterns," Agricultural Water Management, Elsevier, vol. 221(C), pages 371-376.
- F. Huang & G. Wang & Y. Yang & C. Wang, 2014. "Overexploitation status of groundwater and induced geological hazards in China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 73(2), pages 727-741, September.
- Li, Quanqi & Dong, Baodi & Qiao, Yunzhou & Liu, Mengyu & Zhang, Jiwang, 2010. "Root growth, available soil water, and water-use efficiency of winter wheat under different irrigation regimes applied at different growth stages in North China," Agricultural Water Management, Elsevier, vol. 97(10), pages 1676-1682, October.
- Rashid, Muhammad Adil & Zhang, Xiying & Andersen, Mathias Neumann & Olesen, Jørgen Eivind, 2019. "Can mulching of maize straw complement deficit irrigation to improve water use efficiency and productivity of winter wheat in North China Plain?," Agricultural Water Management, Elsevier, vol. 213(C), pages 1-11.
- Chen, Chao & Wang, Enli & Yu, Qiang, 2010. "Modelling the effects of climate variability and water management on crop water productivity and water balance in the North China Plain," Agricultural Water Management, Elsevier, vol. 97(8), pages 1175-1184, August.
- Sun, Zhencai & Zhang, Yinghua & Zhang, Zhen & Gao, Yanmei & Yang, Youming & Han, Meikun & Wang, Zhimin, 2019. "Significance of disposable presowing irrigation in wheat in increasing water use efficiency and maintaining high yield under winter wheat-summer maize rotation in the North China Plain," Agricultural Water Management, Elsevier, vol. 225(C).
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Wang, Bo & Wang, Guiyan & van Dam, Jos & Yang, Xiaolin & Ritsema, Coen & Siddique, Kadambot H.M. & Du, Taisheng & Kang, Shaozhong, 2024. "Diversified crop rotations improve crop water use and subsequent cereal crop yield through soil moisture compensation," Agricultural Water Management, Elsevier, vol. 294(C).
- Huanhuan Peng & Jinran Xiong & Jiayi Zhang & Linghui Zhu & Guiyan Wang & Steven Pacenka & Xiaolin Yang, 2023. "Water Requirements and Comprehensive Benefit Evaluation of Diversified Crop Rotations in the Huang-Huai Plain," Sustainability, MDPI, vol. 15(13), pages 1-20, June.
- Xin Zhang & Jianheng Zhang & Liwei Li & Yang Liu & Wenchao Zhen & Guiyan Wang, 2024. "Interaction Effects of Water and Nitrogen Practices on Wheat Yield, Water and Nitrogen Productivity under Drip Fertigation in Northern China," Agriculture, MDPI, vol. 14(9), pages 1-19, September.
- Yang, Lei & Fang, Xiangyang & Zhou, Jie & Zhao, Jie & Hou, Xiqing & Yang, Yadong & Zang, Huadong & Zeng, Zhaohai, 2024. "Optimal irrigation for wheat-maize rotation depending on precipitation in the North China Plain: Evidence from a four-year experiment," Agricultural Water Management, Elsevier, vol. 294(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Zeng, Ruiyun & Lin, Xiaomao & Welch, Stephen M. & Yang, Shanshan & Huang, Na & Sassenrath, Gretchen F. & Yao, Fengmei, 2023. "Impact of water deficit and irrigation management on winter wheat yield in China," Agricultural Water Management, Elsevier, vol. 287(C).
- Yang, Lei & Fang, Xiangyang & Zhou, Jie & Zhao, Jie & Hou, Xiqing & Yang, Yadong & Zang, Huadong & Zeng, Zhaohai, 2024. "Optimal irrigation for wheat-maize rotation depending on precipitation in the North China Plain: Evidence from a four-year experiment," Agricultural Water Management, Elsevier, vol. 294(C).
- Zhang, Chao & Xie, Ziang & Wang, Qiaojuan & Tang, Min & Feng, Shaoyuan & Cai, Huanjie, 2022. "AquaCrop modeling to explore optimal irrigation of winter wheat for improving grain yield and water productivity," Agricultural Water Management, Elsevier, vol. 266(C).
- Yan, Zhenxing & Zhang, Wenying & Liu, Xiuwei & Wang, Qingsuo & Liu, Binhui & Mei, Xurong, 2024. "Grain yield and water productivity of winter wheat controlled by irrigation regime and manure substitution in the North China Plain," Agricultural Water Management, Elsevier, vol. 295(C).
- Xin Zhang & Jianheng Zhang & Jiaxin Xue & Guiyan Wang, 2023. "Improving Wheat Yield and Water-Use Efficiency by Optimizing Irrigations in Northern China," Sustainability, MDPI, vol. 15(13), pages 1-16, July.
- You, Yongliang & Song, Ping & Yang, Xianlong & Zheng, Yapeng & Dong, Li & Chen, Jing, 2022. "Optimizing irrigation for winter wheat to maximize yield and maintain high-efficient water use in a semi-arid environment," Agricultural Water Management, Elsevier, vol. 273(C).
- Zhao, Jie & Han, Tong & Wang, Chong & Jia, Hao & Worqlul, Abeyou W. & Norelli, Nicole & Zeng, Zhaohai & Chu, Qingquan, 2020. "Optimizing irrigation strategies to synchronously improve the yield and water productivity of winter wheat under interannual precipitation variability in the North China Plain," Agricultural Water Management, Elsevier, vol. 240(C).
- Zeng, Ruiyun & Yao, Fengmei & Zhang, Sha & Yang, Shanshan & Bai, Yun & Zhang, Jiahua & Wang, Jingwen & Wang, Xin, 2021. "Assessing the effects of precipitation and irrigation on winter wheat yield and water productivity in North China Plain," Agricultural Water Management, Elsevier, vol. 256(C).
- Fang, Qin & Wang, Yanzhe & Uwimpaye, Fasilate & Yan, Zongzheng & Li, Lu & Liu, Xiuwei & Shao, Liwei, 2021. "Pre-sowing soil water conditions and water conservation measures affecting the yield and water productivity of summer maize," Agricultural Water Management, Elsevier, vol. 245(C).
- Ren, Pinpin & Huang, Feng & Li, Baoguo, 2022. "Spatiotemporal patterns of water consumption and irrigation requirements of wheat-maize in the Huang-Huai-Hai Plain, China and options of their reduction," Agricultural Water Management, Elsevier, vol. 263(C).
- Sun, Hongyong & Zhang, Xiying & Liu, Xiujing & Liu, Xiuwei & Shao, Liwei & Chen, Suying & Wang, Jintao & Dong, Xinliang, 2019. "Impact of different cropping systems and irrigation schedules on evapotranspiration, grain yield and groundwater level in the North China Plain," Agricultural Water Management, Elsevier, vol. 211(C), pages 202-209.
- Mu, Qing & Xu, Jiatun & Yu, Miao & Guo, Zijian & Dong, Mengqi & Cao, Yuxin & Zhang, Suiqi & Sun, Shikun & Cai, Huanjie, 2022. "Physiological response of winter wheat (Triticum aestivum L.) during vegetative growth to gradual, persistent and intermittent drought," Agricultural Water Management, Elsevier, vol. 274(C).
- Ma, Shou-Chen & Zhang, Wei-Qiang & Duan, Ai-Wang & Wang, Tong-Chao, 2019. "Effects of controlling soil moisture regime based on root-sourced signal characteristics on yield formation and water use efficiency of winter wheat," Agricultural Water Management, Elsevier, vol. 221(C), pages 486-492.
- Li, Mengna & Zhou, Shiwei & Shen, Shuaijie & Wang, Jiale & Yang, Yuhao & Wu, Yangzhong & Chen, Fu & Lei, Yongdeng, 2024. "Climate-smart irrigation strategy can mitigate agricultural water consumption while ensuring food security under a changing climate," Agricultural Water Management, Elsevier, vol. 292(C).
- Yang, Xiaolin & Jin, Xinnan & Chu, Qingquan & Pacenka, Steven & Steenhuis, Tammo S., 2021. "Impact of climate variation from 1965 to 2016 on cotton water requirements in North China Plain," Agricultural Water Management, Elsevier, vol. 243(C).
- Wang, Xiangping & Yang, Jingsong & Liu, Guangming & Yao, Rongjiang & Yu, Shipeng, 2015. "Impact of irrigation volume and water salinity on winter wheat productivity and soil salinity distribution," Agricultural Water Management, Elsevier, vol. 149(C), pages 44-54.
- Wang, Li & Liu, Xiaoli & Liu, Xuejing & Bao, Xiaoyuan & Zhang, Xuecheng & Yin, Baozhong & Wang, Wentao & Wang, Yandong & Zhen, Wenchao, 2024. "Effects of spring limited irrigation on grain yield and root characteristics of winter wheat in groundwater-overexploitation areas in the North China Plain," Agricultural Water Management, Elsevier, vol. 294(C).
- Zhao, Jie & Zhang, Xuepeng & Yang, Yadong & Zang, Huadong & Yan, Peng & Meki, Manyowa N. & Doro, Luca & Sui, Peng & Jeong, Jaehak & Zeng, Zhaohai, 2021. "Alternative cropping systems for groundwater irrigation sustainability in the North China Plain," Agricultural Water Management, Elsevier, vol. 250(C).
- Wei, Shiyu & Kuang, Naikun & Jiao, Fengli & Zong, Rui & Li, Quanqi, 2023. "Exploring the effects of subsoiling tillage under various irrigation regimes on the evapotranspiration and crop water productivity of winter wheat using RZWQM2," Agricultural Water Management, Elsevier, vol. 289(C).
- Wang, Xiquan & Nie, Jiangwen & Wang, Peixin & Zhao, Jie & Yang, Yadong & Wang, Shang & Zeng, Zhaohai & Zang, Huadong, 2021. "Does the replacement of chemical fertilizer nitrogen by manure benefit water use efficiency of winter wheat – summer maize systems?," Agricultural Water Management, Elsevier, vol. 243(C).
More about this item
Keywords
Irrigation regime; Historical scenarios; Water productivity; Groundwater table change;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:280:y:2023:i:c:s037837742300094x. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.