IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v211y2019icp202-209.html
   My bibliography  Save this article

Impact of different cropping systems and irrigation schedules on evapotranspiration, grain yield and groundwater level in the North China Plain

Author

Listed:
  • Sun, Hongyong
  • Zhang, Xiying
  • Liu, Xiujing
  • Liu, Xiuwei
  • Shao, Liwei
  • Chen, Suying
  • Wang, Jintao
  • Dong, Xinliang

Abstract

Water shortage is the most limiting factors for the crop production in the North China Plain (NCP). The alternative cropping systems and the water-saving irrigation schedules are the main measures to reduce the groundwater level decline. In this study, APSIM model was used to simulate the effects of four different cropping systems (winter wheat and summer maize cropping system (WW-SM); winter wheat cropping system (WW); summer maize cropping system (SM); winter wheat –summer maize – spring maize cropping systems (WW-SM-sM)) under four different irrigation schedules (normal irrigation (NI); critical irrigation (CI); minimum irrigation (MI); and rain-fed (RF)) on evapotranspiration (ET), water use efficiency (WUE) groundwater table level and crop water productivities in the NCP. Results showed that the WW-SM cropping system had the higher grain yield and ET under NI, CI, MI, and RF conditions. Grain yield reduction (GYR) was decreased with the irrigation amount decreased for the WW cropping system, SM cropping system, and WW-SM-Sm cropping systems which ranged from 21.59% to 48.11%, from 16.71% to 46.93%, from 15.82% to 43.92%, and from 5.09% to 27.22% under the NI, CI, MI and RF irrigation schedules, respectively. For WUE and the economic water use efficiency (WUEe), WW-SM and WW-SM-sM had the higher value, WW and SM had the lower value. The differences for the different cropping systems were mostly caused by the grain yield and the soil evaporation. Meanwhile, the water-saving irrigation schedules and cropping systems both could reduce the groundwater table decline compared to that under normal irrigation and traditional cropping system. There all had the significant impact on groundwater table changes for both the irrigation schedules and cropping systems. However, water restriction will lead to crop yield reduction and water saving depending on the chosen alternative cropping systems and irrigation schedules. Results strongly suggest that the critical irrigation and WW-SM-sM cropping system could mitigate the groundwater over-exploitation and ensure the food safety in the NCP.

Suggested Citation

  • Sun, Hongyong & Zhang, Xiying & Liu, Xiujing & Liu, Xiuwei & Shao, Liwei & Chen, Suying & Wang, Jintao & Dong, Xinliang, 2019. "Impact of different cropping systems and irrigation schedules on evapotranspiration, grain yield and groundwater level in the North China Plain," Agricultural Water Management, Elsevier, vol. 211(C), pages 202-209.
  • Handle: RePEc:eee:agiwat:v:211:y:2019:i:c:p:202-209
    DOI: 10.1016/j.agwat.2018.09.046
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S037837741830636X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2018.09.046?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Iqbal, M. Anjum & Shen, Yanjun & Stricevic, Ruzica & Pei, Hongwei & Sun, Hongyoung & Amiri, Ebrahim & Penas, Angel & del Rio, Sara, 2014. "Evaluation of the FAO AquaCrop model for winter wheat on the North China Plain under deficit irrigation from field experiment to regional yield simulation," Agricultural Water Management, Elsevier, vol. 135(C), pages 61-72.
    2. Ma, Ying & Feng, Shaoyuan & Song, Xianfang, 2013. "A root zone model for estimating soil water balance and crop yield responses to deficit irrigation in the North China Plain," Agricultural Water Management, Elsevier, vol. 127(C), pages 13-24.
    3. Sun, Qinping & Kröbel, Roland & Müller, Torsten & Römheld, Volker & Cui, Zhenling & Zhang, Fusuo & Chen, Xinping, 2011. "Optimization of yield and water-use of different cropping systems for sustainable groundwater use in North China Plain," Agricultural Water Management, Elsevier, vol. 98(5), pages 808-814, March.
    4. Fang, Q.X. & Ma, L. & Green, T.R. & Yu, Q. & Wang, T.D. & Ahuja, L.R., 2010. "Water resources and water use efficiency in the North China Plain: Current status and agronomic management options," Agricultural Water Management, Elsevier, vol. 97(8), pages 1102-1116, August.
    5. van Oort, P.A.J. & Wang, G. & Vos, J. & Meinke, H. & Li, B.G. & Huang, J.K. & van der Werf, W., 2016. "Towards groundwater neutral cropping systems in the Alluvial Fans of the North China Plain," Agricultural Water Management, Elsevier, vol. 165(C), pages 131-140.
    6. Ma, Fengjiao & Gao, Hui & Eneji, A. Egrinya & Jin, Zhanzhong & Han, Lipu & Liu, Jintong, 2016. "An economic valuation of groundwater management for Agriculture in Luancheng county, North China," Agricultural Water Management, Elsevier, vol. 163(C), pages 28-36.
    7. Xiao, Dengpan & Shen, Yanjun & Qi, Yongqing & Moiwo, Juana P. & Min, Leilei & Zhang, Yucui & Guo, Ying & Pei, Hongwei, 2017. "Impact of alternative cropping systems on groundwater use and grain yields in the North China Plain Region," Agricultural Systems, Elsevier, vol. 153(C), pages 109-117.
    8. Sun, Hongyong & Shen, Yanjun & Yu, Qiang & Flerchinger, Gerald N. & Zhang, Yongqiang & Liu, Changming & Zhang, Xiying, 2010. "Effect of precipitation change on water balance and WUE of the winter wheat-summer maize rotation in the North China Plain," Agricultural Water Management, Elsevier, vol. 97(8), pages 1139-1145, August.
    9. Sun, Hong-Yong & Liu, Chang-Ming & Zhang, Xi-Ying & Shen, Yan-Jun & Zhang, Yong-Qiang, 2006. "Effects of irrigation on water balance, yield and WUE of winter wheat in the North China Plain," Agricultural Water Management, Elsevier, vol. 85(1-2), pages 211-218, September.
    10. Guo, Ruiping & Lin, Zhonghui & Mo, Xingguo & Yang, Chunlin, 2010. "Responses of crop yield and water use efficiency to climate change in the North China Plain," Agricultural Water Management, Elsevier, vol. 97(8), pages 1185-1194, August.
    11. Luo, Jianmei & Shen, Yanjun & Qi, Yongqing & Zhang, Yucui & Xiao, Dengpan, 2018. "Evaluating water conservation effects due to cropping system optimization on the Beijing-Tianjin-Hebei plain, China," Agricultural Systems, Elsevier, vol. 159(C), pages 32-41.
    12. Chen, Chao & Wang, Enli & Yu, Qiang, 2010. "Modelling the effects of climate variability and water management on crop water productivity and water balance in the North China Plain," Agricultural Water Management, Elsevier, vol. 97(8), pages 1175-1184, August.
    13. Kang, Shaozhong & Hao, Xinmei & Du, Taisheng & Tong, Ling & Su, Xiaoling & Lu, Hongna & Li, Xiaolin & Huo, Zailin & Li, Sien & Ding, Risheng, 2017. "Improving agricultural water productivity to ensure food security in China under changing environment: From research to practice," Agricultural Water Management, Elsevier, vol. 179(C), pages 5-17.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yan, Zongzheng & Zhang, Xiying & Rashid, Muhammad Adil & Li, Hongjun & Jing, Haichun & Hochman, Zvi, 2020. "Assessment of the sustainability of different cropping systems under three irrigation strategies in the North China Plain under climate change," Agricultural Systems, Elsevier, vol. 178(C).
    2. Ren, Pinpin & Huang, Feng & Li, Baoguo, 2022. "Spatiotemporal patterns of water consumption and irrigation requirements of wheat-maize in the Huang-Huai-Hai Plain, China and options of their reduction," Agricultural Water Management, Elsevier, vol. 263(C).
    3. Wang, Bo & Wang, Guiyan & van Dam, Jos & Yang, Xiaolin & Ritsema, Coen & Siddique, Kadambot H.M. & Du, Taisheng & Kang, Shaozhong, 2024. "Diversified crop rotations improve crop water use and subsequent cereal crop yield through soil moisture compensation," Agricultural Water Management, Elsevier, vol. 294(C).
    4. Xu, Yueyue & Ma, Xiangcheng & Wang, Yingxin & Ali, Shahzad & Cai, Tie & Jia, Zhikuan, 2020. "Effects of ridge-furrow mulching system with supplementary irrigation on soil respiration in winter wheat fields under different rainfall conditions," Agricultural Water Management, Elsevier, vol. 239(C).
    5. Huanhuan Peng & Jinran Xiong & Jiayi Zhang & Linghui Zhu & Guiyan Wang & Steven Pacenka & Xiaolin Yang, 2023. "Water Requirements and Comprehensive Benefit Evaluation of Diversified Crop Rotations in the Huang-Huai Plain," Sustainability, MDPI, vol. 15(13), pages 1-20, June.
    6. Yang, Xiaolin & Jin, Xinnan & Chu, Qingquan & Pacenka, Steven & Steenhuis, Tammo S., 2021. "Impact of climate variation from 1965 to 2016 on cotton water requirements in North China Plain," Agricultural Water Management, Elsevier, vol. 243(C).
    7. Wang, Bo & van Dam, Jos & Yang, Xiaolin & Ritsema, Coen & Du, Taisheng & Kang, Shaozhong, 2023. "Reducing water productivity gap by optimizing irrigation regime for winter wheat-summer maize system in the North China Plain," Agricultural Water Management, Elsevier, vol. 280(C).
    8. Yanxi Zhao & Dengpan Xiao & Huizi Bai & Jianzhao Tang & De Li Liu & Yongqing Qi & Yanjun Shen, 2022. "The Prediction of Wheat Yield in the North China Plain by Coupling Crop Model with Machine Learning Algorithms," Agriculture, MDPI, vol. 13(1), pages 1-19, December.
    9. Wang, Jintao & Dong, Xinliang & Qiu, Rangjian & Lou, Boyuan & Tian, Liu & Chen, Pei & Zhang, Xuejia & Liu, Xiaojing & Sun, Hongyong, 2023. "Optimization of sowing date and irrigation schedule of maize in different cropping systems by APSIM for realizing grain mechanical harvesting in the North China Plain," Agricultural Water Management, Elsevier, vol. 276(C).
    10. Kuang, Naikun & Ma, Yuzhao & Hong, Shengzhe & Jiao, Fengli & Liu, Changyuan & Li, Quanqi & Han, Huifang, 2021. "Simulation of soil moisture dynamics, evapotranspiration, and water drainage of summer maize in response to different depths of subsoiling with RZWQM2," Agricultural Water Management, Elsevier, vol. 249(C).
    11. Wang, Shiquan & Xiong, Jinran & Yang, Boyuan & Yang, Xiaolin & Du, Taisheng & Steenhuis, Tammo S. & Siddique, Kadambot H.M. & Kang, Shaozhong, 2023. "Diversified crop rotations reduce groundwater use and enhance system resilience," Agricultural Water Management, Elsevier, vol. 276(C).
    12. Xiao, Dengpan & Liu, De Li & Wang, Bin & Feng, Puyu & Bai, Huizi & Tang, Jianzhao, 2020. "Climate change impact on yields and water use of wheat and maize in the North China Plain under future climate change scenarios," Agricultural Water Management, Elsevier, vol. 238(C).
    13. Tang, Jianzhao & Xiao, Dengpan & Wang, Jing & Fang, Quanxiao & Zhang, Jun & Bai, Huizi, 2021. "Optimizing water and nitrogen managements for potato production in the agro-pastoral ecotone in North China," Agricultural Water Management, Elsevier, vol. 253(C).
    14. Xiao, Dengpan & Liu, De Li & Feng, Puyu & Wang, Bin & Waters, Cathy & Shen, Yanjun & Qi, Yongqing & Bai, Huizi & Tang, Jianzhao, 2021. "Future climate change impacts on grain yield and groundwater use under different cropping systems in the North China Plain," Agricultural Water Management, Elsevier, vol. 246(C).
    15. Zhao, Jie & Zhang, Xuepeng & Yang, Yadong & Zang, Huadong & Yan, Peng & Meki, Manyowa N. & Doro, Luca & Sui, Peng & Jeong, Jaehak & Zeng, Zhaohai, 2021. "Alternative cropping systems for groundwater irrigation sustainability in the North China Plain," Agricultural Water Management, Elsevier, vol. 250(C).
    16. Zemin Zhang & Changhe Lu, 2019. "Spatio-Temporal Pattern Change of Winter Wheat Production and Its Implications in the North China Plain," Sustainability, MDPI, vol. 11(11), pages 1-14, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Luo, Jianmei & Shen, Yanjun & Qi, Yongqing & Zhang, Yucui & Xiao, Dengpan, 2018. "Evaluating water conservation effects due to cropping system optimization on the Beijing-Tianjin-Hebei plain, China," Agricultural Systems, Elsevier, vol. 159(C), pages 32-41.
    2. Ren, Pinpin & Huang, Feng & Li, Baoguo, 2022. "Spatiotemporal patterns of water consumption and irrigation requirements of wheat-maize in the Huang-Huai-Hai Plain, China and options of their reduction," Agricultural Water Management, Elsevier, vol. 263(C).
    3. Zhong, Honglin & Sun, Laixiang & Fischer, Günther & Tian, Zhan & Liang, Zhuoran, 2019. "Optimizing regional cropping systems with a dynamic adaptation strategy for water sustainable agriculture in the Hebei Plain," Agricultural Systems, Elsevier, vol. 173(C), pages 94-106.
    4. Xiao, Dengpan & Shen, Yanjun & Qi, Yongqing & Moiwo, Juana P. & Min, Leilei & Zhang, Yucui & Guo, Ying & Pei, Hongwei, 2017. "Impact of alternative cropping systems on groundwater use and grain yields in the North China Plain Region," Agricultural Systems, Elsevier, vol. 153(C), pages 109-117.
    5. Sun, Qinping & Kröbel, Roland & Müller, Torsten & Römheld, Volker & Cui, Zhenling & Zhang, Fusuo & Chen, Xinping, 2011. "Optimization of yield and water-use of different cropping systems for sustainable groundwater use in North China Plain," Agricultural Water Management, Elsevier, vol. 98(5), pages 808-814, March.
    6. Luo, Jianmei & Zhang, Hongmei & Qi, Yongqing & Pei, Hongwei & Shen, Yanjun, 2022. "Balancing water and food by optimizing the planting structure in the Beijing–Tianjin–Hebei region, China," Agricultural Water Management, Elsevier, vol. 262(C).
    7. Zhao, Jie & Han, Tong & Wang, Chong & Jia, Hao & Worqlul, Abeyou W. & Norelli, Nicole & Zeng, Zhaohai & Chu, Qingquan, 2020. "Optimizing irrigation strategies to synchronously improve the yield and water productivity of winter wheat under interannual precipitation variability in the North China Plain," Agricultural Water Management, Elsevier, vol. 240(C).
    8. Wang, Jintao & Dong, Xinliang & Qiu, Rangjian & Lou, Boyuan & Tian, Liu & Chen, Pei & Zhang, Xuejia & Liu, Xiaojing & Sun, Hongyong, 2023. "Optimization of sowing date and irrigation schedule of maize in different cropping systems by APSIM for realizing grain mechanical harvesting in the North China Plain," Agricultural Water Management, Elsevier, vol. 276(C).
    9. Liang, Hao & Qin, Wei & Hu, Kelin & Tao, Hongbing & Li, Baoguo, 2019. "Modelling groundwater level dynamics under different cropping systems and developing groundwater neutral systems in the North China Plain," Agricultural Water Management, Elsevier, vol. 213(C), pages 732-741.
    10. Zeng, Ruiyun & Lin, Xiaomao & Welch, Stephen M. & Yang, Shanshan & Huang, Na & Sassenrath, Gretchen F. & Yao, Fengmei, 2023. "Impact of water deficit and irrigation management on winter wheat yield in China," Agricultural Water Management, Elsevier, vol. 287(C).
    11. Zeng, Ruiyun & Yao, Fengmei & Zhang, Sha & Yang, Shanshan & Bai, Yun & Zhang, Jiahua & Wang, Jingwen & Wang, Xin, 2021. "Assessing the effects of precipitation and irrigation on winter wheat yield and water productivity in North China Plain," Agricultural Water Management, Elsevier, vol. 256(C).
    12. Liang, Shuoshuo & Li, Lu & An, Ping & Chen, Suying & Shao, Liwei & Zhang, Xiying, 2021. "Spatial soil water and nutrient distribution affecting the water productivity of winter wheat," Agricultural Water Management, Elsevier, vol. 256(C).
    13. Zhao, Jie & Zhang, Xuepeng & Yang, Yadong & Zang, Huadong & Yan, Peng & Meki, Manyowa N. & Doro, Luca & Sui, Peng & Jeong, Jaehak & Zeng, Zhaohai, 2021. "Alternative cropping systems for groundwater irrigation sustainability in the North China Plain," Agricultural Water Management, Elsevier, vol. 250(C).
    14. Chen, Qiaomin & Liu, Yujie & Ge, Quansheng & Pan, Tao, 2018. "Impacts of historic climate variability and land use change on winter wheat climatic productivity in the North China Plain during 1980–2010," Land Use Policy, Elsevier, vol. 76(C), pages 1-9.
    15. Wang, Xiquan & Nie, Jiangwen & Wang, Peixin & Zhao, Jie & Yang, Yadong & Wang, Shang & Zeng, Zhaohai & Zang, Huadong, 2021. "Does the replacement of chemical fertilizer nitrogen by manure benefit water use efficiency of winter wheat – summer maize systems?," Agricultural Water Management, Elsevier, vol. 243(C).
    16. Yan, Nana & Wu, Bingfang & Perry, Chris & Zeng, Hongwei, 2015. "Assessing potential water savings in agriculture on the Hai Basin plain, China," Agricultural Water Management, Elsevier, vol. 154(C), pages 11-19.
    17. Rashid, Muhammad Adil & Jabloun, Mohamed & Andersen, Mathias Neumann & Zhang, Xiying & Olesen, Jørgen Eivind, 2019. "Climate change is expected to increase yield and water use efficiency of wheat in the North China Plain," Agricultural Water Management, Elsevier, vol. 222(C), pages 193-203.
    18. Zhang, Chao & Xie, Ziang & Wang, Qiaojuan & Tang, Min & Feng, Shaoyuan & Cai, Huanjie, 2022. "AquaCrop modeling to explore optimal irrigation of winter wheat for improving grain yield and water productivity," Agricultural Water Management, Elsevier, vol. 266(C).
    19. van Oort, P.A.J. & Wang, G. & Vos, J. & Meinke, H. & Li, B.G. & Huang, J.K. & van der Werf, W., 2016. "Towards groundwater neutral cropping systems in the Alluvial Fans of the North China Plain," Agricultural Water Management, Elsevier, vol. 165(C), pages 131-140.
    20. Mansour, Elsayed & Abdul-Hamid, Mohamed I & Yasin, Mohamed T & Qabil, Naglaa & Attia, Ahmed, 2017. "Identifying drought-tolerant genotypes of barley and their responses to various irrigation levels in a Mediterranean environment," Agricultural Water Management, Elsevier, vol. 194(C), pages 58-67.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:211:y:2019:i:c:p:202-209. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.