IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i13p10229-d1181274.html
   My bibliography  Save this article

Water Requirements and Comprehensive Benefit Evaluation of Diversified Crop Rotations in the Huang-Huai Plain

Author

Listed:
  • Huanhuan Peng

    (College of Water Resources & Civil Engineering, China Agricultural University, Beijing 100083, China
    National Key Laboratory of Efficient Utilization of Agricultural Water Resources, Beijing 100083, China
    National Field Scientific Observation and Research Station on Efficient Water Use of Oasis Agriculture in Wuwei of Gansu Province, Wuwei 733000, China
    These authors contributed equally to this work.)

  • Jinran Xiong

    (College of Water Resources & Civil Engineering, China Agricultural University, Beijing 100083, China
    National Key Laboratory of Efficient Utilization of Agricultural Water Resources, Beijing 100083, China
    National Field Scientific Observation and Research Station on Efficient Water Use of Oasis Agriculture in Wuwei of Gansu Province, Wuwei 733000, China
    These authors contributed equally to this work.)

  • Jiayi Zhang

    (College of Water Resources & Civil Engineering, China Agricultural University, Beijing 100083, China)

  • Linghui Zhu

    (College of Economics and Management, China Agricultural University, Beijing 100083, China)

  • Guiyan Wang

    (College of Agronomy, Hebei Agricultural University, Baoding 071001, China)

  • Steven Pacenka

    (Department of Biological and Environmental Engineering, Riley-Robb Hall, Cornell University, Ithaca, NY 14853, USA)

  • Xiaolin Yang

    (College of Water Resources & Civil Engineering, China Agricultural University, Beijing 100083, China
    National Key Laboratory of Efficient Utilization of Agricultural Water Resources, Beijing 100083, China
    National Field Scientific Observation and Research Station on Efficient Water Use of Oasis Agriculture in Wuwei of Gansu Province, Wuwei 733000, China)

Abstract

An intensified farming system can significantly increase crop productivity but can also cause major groundwater overdraft for irrigation and the loss of crop diversity. It is imperative to develop alternative crop rotations beyond the simplified conventional winter wheat–summer maize (W–M) rotation for alleviating the groundwater over-extraction in China’s Huang-Huai Plain. This study systematically quantified crop water requirement ( ET c ) and irrigation water requirement ( ET aw ) of eight crops from 2013 to 2018 based on the SIMETAW model applied to the Shangqiu area in the Huang-Huai Plain. Fourteen crop rotations (CI (i.e., crop harvests per rotation cycle year) 1.5 or 2) were constructed based on the ROTAT model. Results showed that compared to W–M rotation, the alternative rotations (CI = 1.5) significantly reduced the annual ET c in wet, normal, and dry years by 9–21%. Replacing winter wheat in the double cropping system did not significantly decrease annual ET c . Wheat–soybean rotation had similar annual ET c and ET aw accompanied by higher economic output and equivalent yield about 1.2 times, with 9% more protein output than the W–M rotation. There were eight crop rotations having greater comprehensive evaluation index ( CEI ) than W–M rotation by Entropy-TOPSIS when considering 10 indicators including water requirements, yield, economic benefits, water use efficiency, energy, and nutritional values. Spring potato–summer soybean had the highest CEI of 0.627. Sweet potato and potato showed advantages when included in rotations by increasing yield. “Wheat–soybean”-based rotations (CI = 1.5) also performed well in profitability and protein output. Replacing summer maize with soybean is promising for profitability and nutrition output without increasing irrigation requirements. Therefore, decreasing the cropping index, or involving soybean or sweet potato in rotations can be a useful way to improve sustainable land use, save water, and ensure food products in this water stressed region.

Suggested Citation

  • Huanhuan Peng & Jinran Xiong & Jiayi Zhang & Linghui Zhu & Guiyan Wang & Steven Pacenka & Xiaolin Yang, 2023. "Water Requirements and Comprehensive Benefit Evaluation of Diversified Crop Rotations in the Huang-Huai Plain," Sustainability, MDPI, vol. 15(13), pages 1-20, June.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:13:p:10229-:d:1181274
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/13/10229/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/13/10229/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zemin Zhang & Changhe Lu, 2020. "Clustering Analysis of Soybean Production to Understand its Spatiotemporal Dynamics in the North China Plain," Sustainability, MDPI, vol. 12(15), pages 1-15, July.
    2. Jamshidi, Sajad & Zand-Parsa, Shahrokh & Kamgar-Haghighi, Ali Akbar & Shahsavar, Ali Reza & Niyogi, Dev, 2020. "Evapotranspiration, crop coefficients, and physiological responses of citrus trees in semi-arid climatic conditions," Agricultural Water Management, Elsevier, vol. 227(C).
    3. Yinhao Wu & Enru Wang & Changhong Miao, 2019. "Fertilizer Use in China: The Role of Agricultural Support Policies," Sustainability, MDPI, vol. 11(16), pages 1-23, August.
    4. Wang, Bo & van Dam, Jos & Yang, Xiaolin & Ritsema, Coen & Du, Taisheng & Kang, Shaozhong, 2023. "Reducing water productivity gap by optimizing irrigation regime for winter wheat-summer maize system in the North China Plain," Agricultural Water Management, Elsevier, vol. 280(C).
    5. Sainju, Upendra M. & Lenssen, Andrew W. & Allen, Brett L. & Jabro, Jalal D. & Stevens, William B., 2021. "Crop water and nitrogen productivity in response to long-term diversified crop rotations and management systems," Agricultural Water Management, Elsevier, vol. 257(C).
    6. Sun, Hongyong & Zhang, Xiying & Liu, Xiujing & Liu, Xiuwei & Shao, Liwei & Chen, Suying & Wang, Jintao & Dong, Xinliang, 2019. "Impact of different cropping systems and irrigation schedules on evapotranspiration, grain yield and groundwater level in the North China Plain," Agricultural Water Management, Elsevier, vol. 211(C), pages 202-209.
    7. Tufa, Adane Hirpa & Alene, Arega D. & Manda, Julius & Akinwale, M.G. & Chikoye, David & Feleke, Shiferaw & Wossen, Tesfamicheal & Manyong, Victor, 2019. "The productivity and income effects of adoption of improved soybean varieties and agronomic practices in Malawi," World Development, Elsevier, vol. 124(C), pages 1-1.
    8. Liu, Xiaogang & Peng, Youliang & Yang, Qiliang & Wang, Xiukang & Cui, Ningbo, 2021. "Determining optimal deficit irrigation and fertilization to increase mango yield, quality, and WUE in a dry hot environment based on TOPSIS," Agricultural Water Management, Elsevier, vol. 245(C).
    9. Luo, Jianmei & Shen, Yanjun & Qi, Yongqing & Zhang, Yucui & Xiao, Dengpan, 2018. "Evaluating water conservation effects due to cropping system optimization on the Beijing-Tianjin-Hebei plain, China," Agricultural Systems, Elsevier, vol. 159(C), pages 32-41.
    10. Wang, Shiquan & Xiong, Jinran & Yang, Boyuan & Yang, Xiaolin & Du, Taisheng & Steenhuis, Tammo S. & Siddique, Kadambot H.M. & Kang, Shaozhong, 2023. "Diversified crop rotations reduce groundwater use and enhance system resilience," Agricultural Water Management, Elsevier, vol. 276(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Bo & Wang, Guiyan & van Dam, Jos & Yang, Xiaolin & Ritsema, Coen & Siddique, Kadambot H.M. & Du, Taisheng & Kang, Shaozhong, 2024. "Diversified crop rotations improve crop water use and subsequent cereal crop yield through soil moisture compensation," Agricultural Water Management, Elsevier, vol. 294(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Jintao & Dong, Xinliang & Qiu, Rangjian & Lou, Boyuan & Tian, Liu & Chen, Pei & Zhang, Xuejia & Liu, Xiaojing & Sun, Hongyong, 2023. "Optimization of sowing date and irrigation schedule of maize in different cropping systems by APSIM for realizing grain mechanical harvesting in the North China Plain," Agricultural Water Management, Elsevier, vol. 276(C).
    2. Wang, Bo & Wang, Guiyan & van Dam, Jos & Yang, Xiaolin & Ritsema, Coen & Siddique, Kadambot H.M. & Du, Taisheng & Kang, Shaozhong, 2024. "Diversified crop rotations improve crop water use and subsequent cereal crop yield through soil moisture compensation," Agricultural Water Management, Elsevier, vol. 294(C).
    3. Xiaolin Yang & Jinran Xiong & Taisheng Du & Xiaotang Ju & Yantai Gan & Sien Li & Longlong Xia & Yanjun Shen & Steven Pacenka & Tammo S. Steenhuis & Kadambot H. M. Siddique & Shaozhong Kang & Klaus But, 2024. "Diversifying crop rotation increases food production, reduces net greenhouse gas emissions and improves soil health," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    4. Yan, Zongzheng & Zhang, Xiying & Rashid, Muhammad Adil & Li, Hongjun & Jing, Haichun & Hochman, Zvi, 2020. "Assessment of the sustainability of different cropping systems under three irrigation strategies in the North China Plain under climate change," Agricultural Systems, Elsevier, vol. 178(C).
    5. Wang, Shiquan & Xiong, Jinran & Yang, Boyuan & Yang, Xiaolin & Du, Taisheng & Steenhuis, Tammo S. & Siddique, Kadambot H.M. & Kang, Shaozhong, 2023. "Diversified crop rotations reduce groundwater use and enhance system resilience," Agricultural Water Management, Elsevier, vol. 276(C).
    6. Wang, Bo & van Dam, Jos & Yang, Xiaolin & Ritsema, Coen & Du, Taisheng & Kang, Shaozhong, 2023. "Reducing water productivity gap by optimizing irrigation regime for winter wheat-summer maize system in the North China Plain," Agricultural Water Management, Elsevier, vol. 280(C).
    7. Zhao, Jie & Zhang, Xuepeng & Yang, Yadong & Zang, Huadong & Yan, Peng & Meki, Manyowa N. & Doro, Luca & Sui, Peng & Jeong, Jaehak & Zeng, Zhaohai, 2021. "Alternative cropping systems for groundwater irrigation sustainability in the North China Plain," Agricultural Water Management, Elsevier, vol. 250(C).
    8. Xiao, Dengpan & Liu, De Li & Feng, Puyu & Wang, Bin & Waters, Cathy & Shen, Yanjun & Qi, Yongqing & Bai, Huizi & Tang, Jianzhao, 2021. "Future climate change impacts on grain yield and groundwater use under different cropping systems in the North China Plain," Agricultural Water Management, Elsevier, vol. 246(C).
    9. Xueqin Jiang & Shanjun Luo & Qin Ye & Xican Li & Weihua Jiao, 2022. "Hyperspectral Estimates of Soil Moisture Content Incorporating Harmonic Indicators and Machine Learning," Agriculture, MDPI, vol. 12(8), pages 1-17, August.
    10. Amadu, Festus O. & McNamara, Paul E. & Davis, Kristin E., 2021. "Soil health and grain yield impacts of climate resilient agriculture projects: Evidence from southern Malawi," Agricultural Systems, Elsevier, vol. 193(C).
    11. Al-Qthanin, Rahmah N. & AbdAlghafar, Ibrahim M. & Mahmoud, Doaa S. & Fikry, Ahmed M. & AlEnezi, Norah A. & Elesawi, Ibrahim Eid & AbuQamar, Synan F. & Gad, Mohamed M. & El-Tarabily, Khaled A., 2024. "Impact of rice straw mulching on water consumption and productivity of orange trees [Citrus sinensis (L.) Osbeck]," Agricultural Water Management, Elsevier, vol. 298(C).
    12. Rathore, Vijay Singh & Nathawat, Narayan Singh & Bhardwaj, Seema & Yadav, Bhagirath Mal & Santra, Priyabrata & Kumar, Mahesh & Shekhawat, Ravindra Singh & Reager, Madan Lal & Yadav, Shish Ram & Lal, B, 2022. "Alternative cropping systems and optimized management practices for saving groundwater and enhancing economic and environmental sustainability," Agricultural Water Management, Elsevier, vol. 272(C).
    13. Wen, Shenglin & Cui, Ningbo & Wang, Yaosheng & Gong, Daozhi & Xing, Liwen & Wu, Zongjun & Zhang, Yixuan & Zhao, Long & Fan, Junliang & Wang, Zhihui, 2024. "Optimizing deficit drip irrigation to improve yield,quality, and water productivity of apple in Loess Plateau of China," Agricultural Water Management, Elsevier, vol. 296(C).
    14. repec:ags:aaea22:335656 is not listed on IDEAS
    15. Li, Jingang & He, Pingru & Chen, Jing & Hamad, Amar Ali Adam & Dai, Xiaoping & Jin, Qiu & Ding, Siyu, 2023. "Tomato performance and changes in soil chemistry in response to salinity and Na/Ca ratio of irrigation water," Agricultural Water Management, Elsevier, vol. 285(C).
    16. Huaquan Zhang & Abbas Ali Chandio & Fan Yang & Yashuang Tang & Martinson Ankrah Twumasi & Ghulam Raza Sargani, 2022. "Modeling the Impact of Climatological Factors and Technological Revolution on Soybean Yield: Evidence from 13-Major Provinces of China," IJERPH, MDPI, vol. 19(9), pages 1-16, May.
    17. Jafari, Mohammad & Kamali, Hamidreza & Keshavarz, Ali & Momeni, Akbar, 2021. "Estimation of evapotranspiration and crop coefficient of drip-irrigated orange trees under a semi-arid climate," Agricultural Water Management, Elsevier, vol. 248(C).
    18. Gheysari, Mahdi & Pirnajmedin, Fatemeh & Movahedrad, Hamid & Majidi, Mohammad Mahdi & Zareian, Mohammad Javad, 2021. "Crop yield and irrigation water productivity of silage maize under two water stress strategies in semi-arid environment: Two different pot and field experiments," Agricultural Water Management, Elsevier, vol. 255(C).
    19. Diwakar KC & Dinesh Jamarkattel & Tek Maraseni & Dilip Nandwani & Pratibha Karki, 2021. "The Effects of Tunnel Technology on Crop Productivity and Livelihood of Smallholder Farmers in Nepal," Sustainability, MDPI, vol. 13(14), pages 1-15, July.
    20. Yi Chen & Zhengbing Wang, 2023. "The Impact of Land Transfers on the Adoption of New Varieties: Evidence from Micro-Survey Data in Shaanxi Province, China," Land, MDPI, vol. 12(3), pages 1-23, March.
    21. Saitta, Daniela & Consoli, Simona & Ferlito, Filippo & Torrisi, Biagio & Allegra, Maria & Longo-Minnolo, Giuseppe & Ramírez-Cuesta, Juan Miguel & Vanella, Daniela, 2021. "Adaptation of citrus orchards to deficit irrigation strategies," Agricultural Water Management, Elsevier, vol. 247(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:13:p:10229-:d:1181274. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.