Adaptation of sprinkler irrigation scheduling and winter wheat variety to cope with climate change in the North China Plain
Author
Abstract
Suggested Citation
DOI: 10.1016/j.agwat.2024.108929
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Lu, Yang & Yan, Zongzheng & Li, Lu & Gao, Congshuai & Shao, Liwei, 2020. "Selecting traits to improve the yield and water use efficiency of winter wheat under limited water supply," Agricultural Water Management, Elsevier, vol. 242(C).
- Liu, Hai-Jun & Kang, Yaohu, 2006. "Effect of sprinkler irrigation on microclimate in the winter wheat field in the North China Plain," Agricultural Water Management, Elsevier, vol. 84(1-2), pages 3-19, July.
- Sun, Hongyong & Zhang, Xiying & Liu, Xiujing & Liu, Xiuwei & Shao, Liwei & Chen, Suying & Wang, Jintao & Dong, Xinliang, 2019. "Impact of different cropping systems and irrigation schedules on evapotranspiration, grain yield and groundwater level in the North China Plain," Agricultural Water Management, Elsevier, vol. 211(C), pages 202-209.
- Claudia Tebaldi & David Lobell, 2018. "Estimated impacts of emission reductions on wheat and maize crops," Climatic Change, Springer, vol. 146(3), pages 533-545, February.
- Sajjad Hussain & Linlin Lu & Muhammad Mubeen & Wajid Nasim & Shankar Karuppannan & Shah Fahad & Aqil Tariq & B. G. Mousa & Faisal Mumtaz & Muhammad Aslam, 2022. "Spatiotemporal Variation in Land Use Land Cover in the Response to Local Climate Change Using Multispectral Remote Sensing Data," Land, MDPI, vol. 11(5), pages 1-19, April.
- Ishaque, Wajid & Osman, Raheel & Hafiza, Barira Shoukat & Malghani, Saadatullah & Zhao, Ben & Xu, Ming & Ata-Ul-Karim, Syed Tahir, 2023. "Quantifying the impacts of climate change on wheat phenology, yield, and evapotranspiration under irrigated and rainfed conditions," Agricultural Water Management, Elsevier, vol. 275(C).
- Singh, Samar Pal & Mahapatra, B.S. & Pramanick, Biswajit & Yadav, Vimal Raj, 2021. "Effect of irrigation levels, planting methods and mulching on nutrient uptake, yield, quality, water and fertilizer productivity of field mustard (Brassica rapa L.) under sandy loam soil," Agricultural Water Management, Elsevier, vol. 244(C).
- Muhammad Umair & Tabassum Hussain & Hanbing Jiang & Ayesha Ahmad & Jiawei Yao & Yongqing Qi & Yucui Zhang & Leilei Min & Yanjun Shen, 2019. "Water-Saving Potential of Subsurface Drip Irrigation For Winter Wheat," Sustainability, MDPI, vol. 11(10), pages 1-15, May.
- Xiao, Dengpan & Liu, De Li & Wang, Bin & Feng, Puyu & Bai, Huizi & Tang, Jianzhao, 2020. "Climate change impact on yields and water use of wheat and maize in the North China Plain under future climate change scenarios," Agricultural Water Management, Elsevier, vol. 238(C).
- Liu, Zhipeng & Jiao, Xiyun & Zhu, Chengli & Katul, Gabriel G. & Ma, Junyong & Guo, Weihua, 2021. "Micro-climatic and crop responses to micro-sprinkler irrigation," Agricultural Water Management, Elsevier, vol. 243(C).
- Xu, Xu & Sun, Chen & Neng, Fengtian & Fu, Jing & Huang, Guanhua, 2018. "AHC: An integrated numerical model for simulating agroecosystem processes—Model description and application," Ecological Modelling, Elsevier, vol. 390(C), pages 23-39.
- Wang, Xiaowen & Li, Liang & Ding, Yibo & Xu, Jiatun & Wang, Yunfei & Zhu, Yan & Wang, Xiaoyun & Cai, Huanjie, 2021. "Adaptation of winter wheat varieties and irrigation patterns under future climate change conditions in Northern China," Agricultural Water Management, Elsevier, vol. 243(C).
- Anwar, Muhuddin Rajin & Liu, De Li & Farquharson, Robert & Macadam, Ian & Abadi, Amir & Finlayson, John & Wang, Bin & Ramilan, Thiagarajah, 2015. "Climate change impacts on phenology and yields of five broadacre crops at four climatologically distinct locations in Australia," Agricultural Systems, Elsevier, vol. 132(C), pages 133-144.
- L. Samaniego & S. Thober & R. Kumar & N. Wanders & O. Rakovec & M. Pan & M. Zink & J. Sheffield & E. F. Wood & A. Marx, 2018. "Anthropogenic warming exacerbates European soil moisture droughts," Nature Climate Change, Nature, vol. 8(5), pages 421-426, May.
- De Liu & Heping Zuo, 2012. "Statistical downscaling of daily climate variables for climate change impact assessment over New South Wales, Australia," Climatic Change, Springer, vol. 115(3), pages 629-666, December.
- Xu, Xu & Huang, Guanhua & Sun, Chen & Pereira, Luis S. & Ramos, Tiago B. & Huang, Quanzhong & Hao, Yuanyuan, 2013. "Assessing the effects of water table depth on water use, soil salinity and wheat yield: Searching for a target depth for irrigated areas in the upper Yellow River basin," Agricultural Water Management, Elsevier, vol. 125(C), pages 46-60.
- Rashid, Muhammad Adil & Jabloun, Mohamed & Andersen, Mathias Neumann & Zhang, Xiying & Olesen, Jørgen Eivind, 2019. "Climate change is expected to increase yield and water use efficiency of wheat in the North China Plain," Agricultural Water Management, Elsevier, vol. 222(C), pages 193-203.
- Li, Na & Yao, Ning & Li, Yi & Chen, Junqing & Liu, Deli & Biswas, Asim & Li, Linchao & Wang, Tianxue & Chen, Xinguo, 2021. "A meta-analysis of the possible impact of climate change on global cotton yield based on crop simulation approaches," Agricultural Systems, Elsevier, vol. 193(C).
- Kang, Yaohu & Wang, Ruoshui & Wan, Shuqin & Hu, Wei & Jiang, Shufang & Liu, Shiping, 2012. "Effects of different water levels on cotton growth and water use through drip irrigation in an arid region with saline ground water of Northwest China," Agricultural Water Management, Elsevier, vol. 109(C), pages 117-126.
- Bin Wang & De Li Liu & Ian Macadam & Lisa V. Alexander & Gab Abramowitz & Qiang Yu, 2016. "Multi-model ensemble projections of future extreme temperature change using a statistical downscaling method in south eastern Australia," Climatic Change, Springer, vol. 138(1), pages 85-98, September.
- Chen, Chao & Wang, Enli & Yu, Qiang, 2010. "Modelling the effects of climate variability and water management on crop water productivity and water balance in the North China Plain," Agricultural Water Management, Elsevier, vol. 97(8), pages 1175-1184, August.
- Egerer, Sabine & Puente, Andrea Fajardo & Peichl, Michael & Rakovec, Oldrich & Samaniego, Luis & Schneider, Uwe A., 2023. "Limited potential of irrigation to prevent potato yield losses in Germany under climate change," Agricultural Systems, Elsevier, vol. 207(C).
- Xiaopei Tang & Haijun Liu & Li Yang & Lun Li & Jie Chang, 2022. "Energy Balance, Microclimate, and Crop Evapotranspiration of Winter Wheat ( Triticum aestivum L.) under Sprinkler Irrigation," Agriculture, MDPI, vol. 12(7), pages 1-23, June.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Haowei Sun & Jinghan Ma & Li Wang, 2023. "Changes in per capita wheat production in China in the context of climate change and population growth," Food Security: The Science, Sociology and Economics of Food Production and Access to Food, Springer;The International Society for Plant Pathology, vol. 15(3), pages 597-612, June.
- Zhang, Xueliang & Ding, Beibei & Hou, Yonghao & Feng, Puyu & Liu, De Li & Srinivasan, Raghavan & Chen, Yong, 2024. "Assessing the feasibility of sprinkler irrigation schemes and their adaptation to future climate change in groundwater over-exploitation regions," Agricultural Water Management, Elsevier, vol. 292(C).
- Wang, Bo & van Dam, Jos & Yang, Xiaolin & Ritsema, Coen & Du, Taisheng & Kang, Shaozhong, 2023. "Reducing water productivity gap by optimizing irrigation regime for winter wheat-summer maize system in the North China Plain," Agricultural Water Management, Elsevier, vol. 280(C).
- Wang, Bin & Feng, Puyu & Chen, Chao & Liu, De Li & Waters, Cathy & Yu, Qiang, 2019. "Designing wheat ideotypes to cope with future changing climate in South-Eastern Australia," Agricultural Systems, Elsevier, vol. 170(C), pages 9-18.
- Xiao, Dengpan & Liu, De Li & Feng, Puyu & Wang, Bin & Waters, Cathy & Shen, Yanjun & Qi, Yongqing & Bai, Huizi & Tang, Jianzhao, 2021. "Future climate change impacts on grain yield and groundwater use under different cropping systems in the North China Plain," Agricultural Water Management, Elsevier, vol. 246(C).
- Islam, AFM Tariqul & Islam, AKM Saiful & Islam, GM Tarekul & Bala, Sujit Kumar & Salehin, Mashfiqus & Choudhury, Apurba Kanti & Dey, Nepal C. & Hossain, Akbar, 2022. "Adaptation strategies to increase water productivity of wheat under changing climate," Agricultural Water Management, Elsevier, vol. 264(C).
- Xiaopei Tang & Haijun Liu & Li Yang & Lun Li & Jie Chang, 2022. "Energy Balance, Microclimate, and Crop Evapotranspiration of Winter Wheat ( Triticum aestivum L.) under Sprinkler Irrigation," Agriculture, MDPI, vol. 12(7), pages 1-23, June.
- Wang, Rong & Huang, Guanhua & Xu, Xu & Ren, Dongyang & Gou, Jiachao & Wu, Zhangsheng, 2022. "Significant differences in agro-hydrological processes and water productivity between canal- and well-irrigated areas in an arid region," Agricultural Water Management, Elsevier, vol. 267(C).
- Zhang, Chao & Xie, Ziang & Wang, Qiaojuan & Tang, Min & Feng, Shaoyuan & Cai, Huanjie, 2022. "AquaCrop modeling to explore optimal irrigation of winter wheat for improving grain yield and water productivity," Agricultural Water Management, Elsevier, vol. 266(C).
- Yong Li & De Li Liu & Graeme Schwenke & Bin Wang & Ian Macadam & Weijin Wang & Guangdi Li & Ram C Dalal, 2017. "Responses of nitrous oxide emissions from crop rotation systems to four projected future climate change scenarios on a black Vertosol in subtropical Australia," Climatic Change, Springer, vol. 142(3), pages 545-558, June.
- Pengtao Wang & Xupu Li & Liwei Zhang & Zhuangzhuang Wang & Jiangtao Bai & Yongyong Song & Hongzhu Han & Ting Zhao & Guan Huang & Junping Yan, 2023. "Spatiotemporal Variations of Production–Living–Ecological Space under Various, Changing Climate and Land Use Scenarios in the Upper Reaches of Hanjiang River Basin, China," Land, MDPI, vol. 12(9), pages 1-21, September.
- Zhu, Hongyan & Zheng, Bingyan & Nie, Weibo & Fei, Liangjun & Shan, Yuyang & Li, Ge & Liang, Fei, 2024. "Optimization of maize irrigation strategy in Xinjiang, China by AquaCrop based on a four-year study," Agricultural Water Management, Elsevier, vol. 297(C).
- Bao, Xiaoyuan & Zhang, Baoyuan & Dai, Menglei & Liu, Xuejing & Ren, Jianhong & Gu, Limin & Zhen, Wenchao, 2024. "Improvement of grain weight and crop water productivity in winter wheat by light and frequent irrigation based on crop evapotranspiration," Agricultural Water Management, Elsevier, vol. 301(C).
- Tang, Jianzhao & Xiao, Dengpan & Wang, Jing & Fang, Quanxiao & Zhang, Jun & Bai, Huizi, 2021. "Optimizing water and nitrogen managements for potato production in the agro-pastoral ecotone in North China," Agricultural Water Management, Elsevier, vol. 253(C).
- Feng, Xuyu & Liu, Haijun & Feng, Dongxue & Tang, Xiaopei & Li, Lun & Chang, Jie & Tanny, Josef & Liu, Ronghao, 2023. "Quantifying winter wheat evapotranspiration and crop coefficients under sprinkler irrigation using eddy covariance technology in the North China Plain," Agricultural Water Management, Elsevier, vol. 277(C).
- Tan, Lili & Feng, Puyu & Li, Baoguo & Huang, Feng & Liu, De Li & Ren, Pinpin & Liu, Haipeng & Srinivasan, Raghavan & Chen, Yong, 2022. "Climate change impacts on crop water productivity and net groundwater use under a double-cropping system with intensive irrigation in the Haihe River Basin, China," Agricultural Water Management, Elsevier, vol. 266(C).
- Qi, Zhi & Gao, Ya & Sun, Chen & Ramos, Tiago B. & Mu, Danning & Xun, Yihao & Huang, Guanhua & Xu, Xu, 2024. "Assessing water-nitrogen use, crop growth and economic benefits for maize in upper Yellow River basin: Feasibility analysis for border and drip irrigation," Agricultural Water Management, Elsevier, vol. 295(C).
- Liu Liu & Zezhong Guo & Guanhua Huang & Ruotong Wang, 2019. "Water Productivity Evaluation under Multi-GCM Projections of Climate Change in Oases of the Heihe River Basin, Northwest China," IJERPH, MDPI, vol. 16(10), pages 1-17, May.
- Ennan Zheng & Mengting Qin & Peng Chen & Tianyu Xu & Zhongxue Zhang, 2022. "Climate Change Affects the Utilization of Light and Heat Resources in Paddy Field on the Songnen Plain, China," Agriculture, MDPI, vol. 12(10), pages 1-19, October.
- Yan, Zongzheng & Zhang, Xiying & Rashid, Muhammad Adil & Li, Hongjun & Jing, Haichun & Hochman, Zvi, 2020. "Assessment of the sustainability of different cropping systems under three irrigation strategies in the North China Plain under climate change," Agricultural Systems, Elsevier, vol. 178(C).
More about this item
Keywords
Sprinkler irrigation scheduling; Wheat variety; Climate change; North China Plain; Wheat yield;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:301:y:2024:i:c:s0378377424002646. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.