IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v213y2019icp1-11.html
   My bibliography  Save this article

Can mulching of maize straw complement deficit irrigation to improve water use efficiency and productivity of winter wheat in North China Plain?

Author

Listed:
  • Rashid, Muhammad Adil
  • Zhang, Xiying
  • Andersen, Mathias Neumann
  • Olesen, Jørgen Eivind

Abstract

Improving resource-use efficiency is vital for sustainable agricultural production and food security in water-scarce regions such as North China Plain. The aim of this study was to assess the effects of irrigation and straw-mulch on accumulated intercepted photosynthetically active radiation (AIPAR), radiation-use efficiency (RUE) and water-use efficiency (WUE) of wheat. A two-factorial field experiment was carried out at Luancheng Research Station (China) during 2015–16 and 2016–17. The factors included three irrigation levels – full (FI), deficit (DI) and partial root-zone drying (PRD), which besides rainfall received 200, 100 and 100 mm of irrigation, respectively, and two mulching strategies – mulch and no-mulch: ∼8 and 0 Mg ha−1, respectively. The results showed that mulch reduced AIPAR (6–11%) and increased RUE for total aboveground dry biomass (3–9%). Mulch affected intercepted photosynthetically active radiation (IPAR) between the tillering and anthesis stages, largely because of reduced soil surface temperature (0.8–1.5 °C), which led to delayed growth/development and impaired light interception. No significant difference was observed between DI and PRD for grain yield; however, effects on WUE varied during the two seasons. DI led to higher WUE during season I compared to PRD, while PRD resulted in highest WUE during season II. AIPAR was reduced under DI and PRD; however, RUE remained unaffected for irrigation treatments. The complementary effects of mulch were observed only under DI where WUE was increased by 4–6%. The results imply that the PRD irrigation under field conditions is not as effective as it has been anticipated, especially in soils with high clay content. Mulch induced reduction in growth/development tends to nullify its positive effects through water conservation. Taken together, these results reiterate the need to further optimize mulching and PRD irrigation practices before recommending their use under field conditions, especially for small grain cereals.

Suggested Citation

  • Rashid, Muhammad Adil & Zhang, Xiying & Andersen, Mathias Neumann & Olesen, Jørgen Eivind, 2019. "Can mulching of maize straw complement deficit irrigation to improve water use efficiency and productivity of winter wheat in North China Plain?," Agricultural Water Management, Elsevier, vol. 213(C), pages 1-11.
  • Handle: RePEc:eee:agiwat:v:213:y:2019:i:c:p:1-11
    DOI: 10.1016/j.agwat.2018.10.008
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377418311570
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2018.10.008?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhang, Xiying & Chen, Suying & Sun, Hongyong & Wang, Yanmei & Shao, Liwei, 2010. "Water use efficiency and associated traits in winter wheat cultivars in the North China Plain," Agricultural Water Management, Elsevier, vol. 97(8), pages 1117-1125, August.
    2. Zhang, Xiying & Qin, Wenli & Chen, Suying & Shao, Liwei & Sun, Hongyong, 2017. "Responses of yield and WUE of winter wheat to water stress during the past three decades—A case study in the North China Plain," Agricultural Water Management, Elsevier, vol. 179(C), pages 47-54.
    3. Pazzagli, Pietro T. & Weiner, Jacob & Liu, Fulai, 2016. "Effects of CO2 elevation and irrigation regimes on leaf gas exchange, plant water relations, and water use efficiency of two tomato cultivars," Agricultural Water Management, Elsevier, vol. 169(C), pages 26-33.
    4. Zwart, Sander J. & Bastiaanssen, Wim G. M., 2004. "Review of measured crop water productivity values for irrigated wheat, rice, cotton and maize," Agricultural Water Management, Elsevier, vol. 69(2), pages 115-133, September.
    5. Du, Taisheng & Kang, Shaozhong & Zhang, Jianhua & Li, Fusheng & Hu, Xiaotao, 2006. "Yield and physiological responses of cotton to partial root-zone irrigation in the oasis field of northwest China," Agricultural Water Management, Elsevier, vol. 84(1-2), pages 41-52, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Khalid Hussain & Ayesha Ilyas & Saqib Ali & Irshad Bibi & Qamar Shakil & Muhammad Usman Farid & Zulfiqar Ahmad Saqib & Adnan Habib & Erdoğan Eşref HAKKI, 2022. "Impacts of Nitrogen Fertilizer Application and Mulching on the Morpho-Physiological and Yield-Related Traits in Cotton," Agriculture, MDPI, vol. 13(1), pages 1-12, December.
    2. Fang, Qin & Wang, Yanzhe & Uwimpaye, Fasilate & Yan, Zongzheng & Li, Lu & Liu, Xiuwei & Shao, Liwei, 2021. "Pre-sowing soil water conditions and water conservation measures affecting the yield and water productivity of summer maize," Agricultural Water Management, Elsevier, vol. 245(C).
    3. Liao, Yang & Cao, Hong-Xia & Xue, Wen-Kai & Liu, Xing, 2021. "Effects of the combination of mulching and deficit irrigation on the soil water and heat, growth and productivity of apples," Agricultural Water Management, Elsevier, vol. 243(C).
    4. Yan Zhang & Ji Zhao & Hongyuan Wang & Huancheng Pang, 2023. "Pelletized Straw Incorporation in Sandy Soil Increases Soil Aggregate Stability, Soil Carbon, and Nitrogen Stocks," Sustainability, MDPI, vol. 15(9), pages 1-16, April.
    5. Wang, Bo & van Dam, Jos & Yang, Xiaolin & Ritsema, Coen & Du, Taisheng & Kang, Shaozhong, 2023. "Reducing water productivity gap by optimizing irrigation regime for winter wheat-summer maize system in the North China Plain," Agricultural Water Management, Elsevier, vol. 280(C).
    6. Wang, Ying & Shi, Wenjuan & Wen, Tianyang, 2023. "Prediction of winter wheat yield and dry matter in North China Plain using machine learning algorithms for optimal water and nitrogen application," Agricultural Water Management, Elsevier, vol. 277(C).
    7. Liao, Zhenqi & Zhang, Chen & Yu, Shuolei & Lai, Zhenlin & Wang, Haidong & Zhang, Fucang & Li, Zhijun & Wu, Peng & Fan, Junliang, 2023. "Ridge-furrow planting with black film mulching increases rainfed summer maize production by improving resources utilization on the Loess Plateau of China," Agricultural Water Management, Elsevier, vol. 289(C).
    8. Liao, Yang & Cao, Hong-Xia & Liu, Xing & Li, Huang-Tao & Hu, Qing-Yang & Xue, Wen-Kai, 2021. "By increasing infiltration and reducing evaporation, mulching can improve the soil water environment and apple yield of orchards in semiarid areas," Agricultural Water Management, Elsevier, vol. 253(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Xiying & Chen, Suying & Sun, Hongyong & Shao, Liwei & Wang, Yanzhe, 2011. "Changes in evapotranspiration over irrigated winter wheat and maize in North China Plain over three decades," Agricultural Water Management, Elsevier, vol. 98(6), pages 1097-1104, April.
    2. Tomaz, Alexandra & Palma, José Ferro & Ramos, Tiago & Costa, Maria Natividade & Rosa, Elizabete & Santos, Marta & Boteta, Luís & Dôres, José & Patanita, Manuel, 2021. "Yield, technological quality and water footprints of wheat under Mediterranean climate conditions: A field experiment to evaluate the effects of irrigation and nitrogen fertilization strategies," Agricultural Water Management, Elsevier, vol. 258(C).
    3. Lu, Yang & Yan, Zongzheng & Li, Lu & Gao, Congshuai & Shao, Liwei, 2020. "Selecting traits to improve the yield and water use efficiency of winter wheat under limited water supply," Agricultural Water Management, Elsevier, vol. 242(C).
    4. Islam, AFM Tariqul & Islam, AKM Saiful & Islam, GM Tarekul & Bala, Sujit Kumar & Salehin, Mashfiqus & Choudhury, Apurba Kanti & Dey, Nepal C. & Mahboob, M. Golam, 2023. "Simulation of water productivity of wheat in northwestern Bangladesh using multi-satellite data," Agricultural Water Management, Elsevier, vol. 281(C).
    5. Wei, Zhenhua & Du, Taisheng & Li, Xiangnan & Fang, Liang & Liu, Fulai, 2018. "Interactive effects of CO2 concentration elevation and nitrogen fertilization on water and nitrogen use efficiency of tomato grown under reduced irrigation regimes," Agricultural Water Management, Elsevier, vol. 202(C), pages 174-182.
    6. Zhang, Xiying & Uwimpaye, Fasilate & Yan, Zongzheng & Shao, Liwei & Chen, Suying & Sun, Hongyong & Liu, Xiuwei, 2021. "Water productivity improvement in summer maize – A case study in the North China Plain from 1980 to 2019," Agricultural Water Management, Elsevier, vol. 247(C).
    7. Zeng, Ruiyun & Lin, Xiaomao & Welch, Stephen M. & Yang, Shanshan & Huang, Na & Sassenrath, Gretchen F. & Yao, Fengmei, 2023. "Impact of water deficit and irrigation management on winter wheat yield in China," Agricultural Water Management, Elsevier, vol. 287(C).
    8. Zhang, Xiying & Qin, Wenli & Chen, Suying & Shao, Liwei & Sun, Hongyong, 2017. "Responses of yield and WUE of winter wheat to water stress during the past three decades—A case study in the North China Plain," Agricultural Water Management, Elsevier, vol. 179(C), pages 47-54.
    9. Yan, Nana & Wu, Bingfang, 2014. "Integrated spatial–temporal analysis of crop water productivity of winter wheat in Hai Basin," Agricultural Water Management, Elsevier, vol. 133(C), pages 24-33.
    10. Yang, Shanshan & Zhang, Jiahua & Wang, Jingwen & Zhang, Sha & Bai, Yun & Shi, Siqi & Cao, Dan, 2022. "Spatiotemporal variations of water productivity for cropland and driving factors over China during 2001–2015," Agricultural Water Management, Elsevier, vol. 262(C).
    11. Ahmadian, Kamiar & Jalilian, Jalal & Pirzad, Alireza, 2021. "Nano-fertilizers improved drought tolerance in wheat under deficit irrigation," Agricultural Water Management, Elsevier, vol. 244(C).
    12. Zhang, Yucui & Lei, Huimin & Zhao, Wenguang & Shen, Yanjun & Xiao, Dengpan, 2018. "Comparison of the water budget for the typical cropland and pear orchard ecosystems in the North China Plain," Agricultural Water Management, Elsevier, vol. 198(C), pages 53-64.
    13. Ren, Dongyang & Xu, Xu & Engel, Bernard & Huang, Quanzhong & Xiong, Yunwu & Huo, Zailin & Huang, Guanhua, 2021. "A comprehensive analysis of water productivity in natural vegetation and various crops coexistent agro-ecosystems," Agricultural Water Management, Elsevier, vol. 243(C).
    14. Yang, Xin & Bornø, Marie Louise & Wei, Zhenhua & Liu, Fulai, 2021. "Combined effect of partial root drying and elevated atmospheric CO2 on the physiology and fruit quality of two genotypes of tomato plants with contrasting endogenous ABA levels," Agricultural Water Management, Elsevier, vol. 254(C).
    15. Immerzeel, W.W. & Gaur, A. & Zwart, S.J., 2008. "Integrating remote sensing and a process-based hydrological model to evaluate water use and productivity in a south Indian catchment," Agricultural Water Management, Elsevier, vol. 95(1), pages 11-24, January.
    16. Bonfante, A. & Monaco, E. & Manna, P. & De Mascellis, R. & Basile, A. & Buonanno, M. & Cantilena, G. & Esposito, A. & Tedeschi, A. & De Michele, C. & Belfiore, O. & Catapano, I. & Ludeno, G. & Salinas, 2019. "LCIS DSS—An irrigation supporting system for water use efficiency improvement in precision agriculture: A maize case study," Agricultural Systems, Elsevier, vol. 176(C).
    17. Gonçalves, Ivo Zution & Mekonnen, Mesfin M. & Neale, Christopher M.U. & Campos, Isidro & Neale, Michael R., 2020. "Temporal and spatial variations of irrigation water use for commercial corn fields in Central Nebraska," Agricultural Water Management, Elsevier, vol. 228(C).
    18. Mohammad Alauddin & Upali A. Amarasinghe & Bharat R. Sharma, 2014. "Four decades of rice water productivity in Bangladesh: A spatio-temporal analysis of district level panel data," Economic Analysis and Policy, Elsevier, vol. 44(1), pages 51-64.
    19. Gao, Yang & Yang, Linlin & Shen, Xiaojun & Li, Xinqiang & Sun, Jingsheng & Duan, Aiwang & Wu, Laosheng, 2014. "Winter wheat with subsurface drip irrigation (SDI): Crop coefficients, water-use estimates, and effects of SDI on grain yield and water use efficiency," Agricultural Water Management, Elsevier, vol. 146(C), pages 1-10.
    20. Islam, AFM Tariqul & Islam, AKM Saiful & Islam, GM Tarekul & Bala, Sujit Kumar & Salehin, Mashfiqus & Choudhury, Apurba Kanti & Dey, Nepal C. & Hossain, Akbar, 2022. "Adaptation strategies to increase water productivity of wheat under changing climate," Agricultural Water Management, Elsevier, vol. 264(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:213:y:2019:i:c:p:1-11. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.