IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v277y2023ics0378377422006436.html
   My bibliography  Save this article

Assessment of resilience in maize suitable planting areas under drought stress

Author

Listed:
  • Jing, Lanshu
  • Weng, Baisha
  • Yan, Denghua
  • Yuan, Fei
  • Zhang, Shanjun
  • Bi, Wuxia
  • Yan, Siying

Abstract

Crop resilience refers to the adaptive ability of crops to resist drought at a certain level. When the degree of drought stress did not exceed the resilience range of the crop, the crop could recover even exceed normal growth after rehydration. However, the assessment of crop resilience lacks considerations on mechanisms. Focusing on the suitable maize planting areas in China, this study took relative soil humidity (RSH) as the index to screen drought and rehydration events, identified the resilience mechanism of maize under drought and rehydration conditions, and determined the correlation between resilience and RSH. The results shown that the strongest resilience were found in the northern part of the North China Plain (NNCP), the central part of the North China Plain (CNCP), the central-eastern part of the North China Plain (ENCP) and the North Anhui Plain (NAP), followed by the Guanzhong Plain (GP) and the Central Sichuan Hills (CSH), and the Songnen Plain (SP) had the weakest resilience. Based on the relationship analysis between RSH and the resilience of maize under drought stress, maize had resilience when 34%≤RSH≤ 54%, and the resilience increased with the decreasing RSH. When RSH< 34%, the drought stress exceeded the resilience of maize, maize cannot resume normal growth after rehydration. Therefore, bases on the resilience mechanism of maize to drought and combined with the monitoring of RSH, irrigation in an appropriate period can maximize water-saving, which provides supports for drought risk response and efficient utilization of water resources.

Suggested Citation

  • Jing, Lanshu & Weng, Baisha & Yan, Denghua & Yuan, Fei & Zhang, Shanjun & Bi, Wuxia & Yan, Siying, 2023. "Assessment of resilience in maize suitable planting areas under drought stress," Agricultural Water Management, Elsevier, vol. 277(C).
  • Handle: RePEc:eee:agiwat:v:277:y:2023:i:c:s0378377422006436
    DOI: 10.1016/j.agwat.2022.108096
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377422006436
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2022.108096?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ruqing Zhang & Lu Li & Ye Zhang & Feini Huang & Jianduo Li & Wei Liu & Taoning Mao & Zili Xiong & Wei Shangguan, 2021. "Assessment of Agricultural Drought Using Soil Water Deficit Index Based on ERA5-Land Soil Moisture Data in Four Southern Provinces of China," Agriculture, MDPI, vol. 11(5), pages 1-19, May.
    2. Sun, Caixia & Gao, Xiaoxiao & Chen, Xing & Fu, Jianqi & Zhang, Yulan, 2016. "Metabolic and growth responses of maize to successive drought and re-watering cycles," Agricultural Water Management, Elsevier, vol. 172(C), pages 62-73.
    3. Cai, Fu & Zhang, Yushu & Mi, Na & Ming, Huiqing & Zhang, Shujie & Zhang, Hui & Zhao, Xianli, 2020. "Maize (Zea mays L.) physiological responses to drought and rewatering, and the associations with water stress degree," Agricultural Water Management, Elsevier, vol. 241(C).
    4. Wang, Xiao-Ling & Duan, Pei-Ling & Yang, Shen-Jiao & Liu, Yu-Hua & Qi, Lin & Shi, Jiang & Li, Xue-Lin & Song, Peng & Zhang, Li-Xia, 2020. "Corn compensatory growth upon post-drought rewatering based on the effects of rhizosphere soil nitrification on cytokinin," Agricultural Water Management, Elsevier, vol. 241(C).
    5. Heidi Webber & Frank Ewert & Jørgen E. Olesen & Christoph Müller & Stefan Fronzek & Alex C. Ruane & Maryse Bourgault & Pierre Martre & Behnam Ababaei & Marco Bindi & Roberto Ferrise & Robert Finger & , 2018. "Diverging importance of drought stress for maize and winter wheat in Europe," Nature Communications, Nature, vol. 9(1), pages 1-10, December.
    6. Mannan, M.A. & Mia, Shamim & Halder, Eshita & Dijkstra, Feike A., 2021. "Biochar application rate does not improve plant water availability in soybean under drought stress," Agricultural Water Management, Elsevier, vol. 253(C).
    7. Li, Pei & Huang, Qiang & Huang, Shengzhi & Leng, Guoyong & Peng, Jian & Wang, Hao & Zheng, Xudong & Li, Yifei & Fang, Wei, 2022. "Various maize yield losses and their dynamics triggered by drought thresholds based on Copula-Bayesian conditional probabilities," Agricultural Water Management, Elsevier, vol. 261(C).
    8. Li, Yangyang & Liu, Ningning & Fan, Hua & Su, Jixia & Fei, Cong & Wang, Kaiyong & Ma, Fuyu & Kisekka, Isaya, 2019. "Effects of deficit irrigation on photosynthesis, photosynthate allocation, and water use efficiency of sugar beet," Agricultural Water Management, Elsevier, vol. 223(C), pages 1-1.
    9. Zhang, Junxiao & Wang, Qianqing & Xia, Guimin & Wu, Qi & Chi, Daocai, 2021. "Continuous regulated deficit irrigation enhances peanut water use efficiency and drought resistance," Agricultural Water Management, Elsevier, vol. 255(C).
    10. Peterson, Caitlin A. & Eviner, Valerie T. & Gaudin, Amélie C.M., 2018. "Ways forward for resilience research in agroecosystems," Agricultural Systems, Elsevier, vol. 162(C), pages 19-27.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhiqin Zhang & Xiaodong Xie & Muhammad Asad Naseer & Haiyu Zhou & Weidong Cheng & Hexia Xie & Lanqiu Qin & Xiang Yang & Yufeng Jiang & Xunbo Zhou, 2024. "Screening and Physiological Responses of Maize Inbred Lines to Drought Stress in South China," Sustainability, MDPI, vol. 16(17), pages 1-16, August.
    2. Zhao, Xiaole & Mak-Mensah, Erastus & Zhao, Wucheng & Wang, Qi & Zhou, Xujiao & Zhang, Dengkui & Zhu, Jinhui & Qi, Wenjia & Liu, Qinglin & Li, Xiaoling & Li, Xuchun & Liu, Bing, 2024. "Optimized ridge-furrow technology with biochar amendment for alfalfa yield enhancement and soil erosion reduction based on a structural equation model on sloping land," Agricultural Water Management, Elsevier, vol. 298(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhi, Ximin & Bian, Xiaohua & Yu, Jinlong & Xiao, Xiaolu & Duan, Bo & Huang, Fangyuan & Jiang, Zhan & Zhou, Guangsheng & Ma, Ni, 2024. "Comparative metabolomics analysis of tolerant and sensitive genotypes of rapeseed (Brassica napus L.) seedlings under drought stress," Agricultural Water Management, Elsevier, vol. 296(C).
    2. Marcela Prokopová & Luca Salvati & Gianluca Egidi & Ondřej Cudlín & Renata Včeláková & Radek Plch & Pavel Cudlín, 2019. "Envisioning Present and Future Land-Use Change under Varying Ecological Regimes and Their Influence on Landscape Stability," Sustainability, MDPI, vol. 11(17), pages 1-24, August.
    3. Ölkers, Tim & Liu, Shuang & Mußhoff, Oliver, 2023. "A typology of Malian farmers and their credit repayment performance - An unsupervised machine learning approach," 97th Annual Conference, March 27-29, 2023, Warwick University, Coventry, UK 334547, Agricultural Economics Society - AES.
    4. Reza Esmaeili & Rahim Mohammadian & Hossein Heidari Sharif Abad & Ghorban Noor Mohammadi, 2022. "Improving quantity and quality of sugar beet yield using agronomic methods in summer cultivation," Plant, Soil and Environment, Czech Academy of Agricultural Sciences, vol. 68(8), pages 347-357.
    5. Daniele, Bertolozzi-Caredio & Barbara, Soriano & Isabel, Bardaji & Alberto, Garrido, 2022. "Analysis of perceived robustness, adaptability and transformability of Spanish extensive livestock farms under alternative challenging scenarios," Agricultural Systems, Elsevier, vol. 202(C).
    6. Chen, Qi & Qu, Zhaoming & Ma, Guohua & Wang, Wenjing & Dai, Jiaying & Zhang, Min & Wei, Zhanbo & Liu, Zhiguang, 2022. "Humic acid modulates growth, photosynthesis, hormone and osmolytes system of maize under drought conditions," Agricultural Water Management, Elsevier, vol. 263(C).
    7. Cabezas, J.M. & Ruiz-Ramos, M. & Soriano, M.A. & Santos, C. & Gabaldón-Leal, C. & Lorite, I.J., 2021. "Impact of climate change on economic components of Mediterranean olive orchards," Agricultural Water Management, Elsevier, vol. 248(C).
    8. Tocados-Franco, Enrique & Berbel, Julio & Expósito, Alfonso, 2023. "Water policy implications of perennial expansion in the Guadalquivir River Basin (southern Spain)," Agricultural Water Management, Elsevier, vol. 282(C).
    9. Robert Finger, 2023. "Digital innovations for sustainable and resilient agricultural systems," European Review of Agricultural Economics, Oxford University Press and the European Agricultural and Applied Economics Publications Foundation, vol. 50(4), pages 1277-1309.
    10. Norman Siebrecht, 2020. "Sustainable Agriculture and Its Implementation Gap—Overcoming Obstacles to Implementation," Sustainability, MDPI, vol. 12(9), pages 1-27, May.
    11. Roman Rolbiecki & Ali Yücel & Joanna Kocięcka & Atılgan Atilgan & Monika Marković & Daniel Liberacki, 2022. "Analysis of SPI as a Drought Indicator during the Maize Growing Period in the Çukurova Region (Turkey)," Sustainability, MDPI, vol. 14(6), pages 1-29, March.
    12. Adam M. Komarek, 2018. "Conservation agriculture in western China increases productivity and profits without decreasing resilience," Food Security: The Science, Sociology and Economics of Food Production and Access to Food, Springer;The International Society for Plant Pathology, vol. 10(5), pages 1251-1262, October.
    13. Liu, Xuezhi & Manevski, Kiril & Liu, Fulai & Andersen, Mathias Neumann, 2022. "Biomass accumulation and water use efficiency of faba bean-ryegrass intercropping system on sandy soil amended with biochar under reduced irrigation regimes," Agricultural Water Management, Elsevier, vol. 273(C).
    14. Victor Funso Agunbiade & Olubukola Oluranti Babalola, 2023. "Endophytic and rhizobacteria functionalities in alleviating drought stress in maize plants," Plant Protection Science, Czech Academy of Agricultural Sciences, vol. 59(1), pages 1-18.
    15. Ramírez-Cuesta, J.M. & Intrigliolo, D.S. & Lorite, I.J. & Moreno, M.A. & Vanella, D. & Ballesteros, R. & Hernández-López, D. & Buesa, I., 2023. "Determining grapevine water use under different sustainable agronomic practices using METRIC-UAV surface energy balance model," Agricultural Water Management, Elsevier, vol. 281(C).
    16. Fabricius, C. & Novellie, P. & Ringler, C. & Uhlenbrook, Stefan & Wright, D., 2022. "Resilience in agro-ecological landscapes: process principles and outcome indicators," IWMI Reports 329157, International Water Management Institute.
    17. Alejandro Cleves & Eva Youkhana & Javier Toro, 2022. "A Method to Assess Agroecosystem Resilience to Climate Variability," Sustainability, MDPI, vol. 14(14), pages 1-26, July.
    18. Zhang, Junxiao & Liu, Xiaowei & Wu, Qi & Qiu, Yuanze & Chi, Daocai & Xia, Guimin & Arthur, Emmanuel, 2023. "Mulched drip irrigation and maize straw biochar increase peanut yield by regulating soil nitrogen, photosynthesis and root in arid regions," Agricultural Water Management, Elsevier, vol. 289(C).
    19. Markhof,Yannick Valentin & Ponzini,Giulia & Wollburg,Philip Randolph, 2022. "Measuring Disaster Crop Production Losses Using Survey Microdata : Evidence from Sub-Saharan Africa," Policy Research Working Paper Series 9968, The World Bank.
    20. Wang, Kui & Zhang, Yuanyuan & Sekelj, Gasper & Hopke, Philip K., 2019. "Economic analysis of a field monitored residential wood pellet boiler heating system in New York State," Renewable Energy, Elsevier, vol. 133(C), pages 500-511.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:277:y:2023:i:c:s0378377422006436. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.