IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v253y2021ics0378377421002055.html
   My bibliography  Save this article

Biochar application rate does not improve plant water availability in soybean under drought stress

Author

Listed:
  • Mannan, M.A.
  • Mia, Shamim
  • Halder, Eshita
  • Dijkstra, Feike A.

Abstract

Biochar, a form of porous pyrogenic carbon, has been shown to influence soil physicochemical properties and increase crop yield. However, it is unclear whether biochar application at different rates will improve crop performance in a clay soil under drought conditions through increasing plant water uptake. Here, we examined performance of soybean after amendment with biochar (pyrolysed at ~400 °C for 5 h) at four application rates (0, 25, 50 and 100 t ha−1) and grown under three moisture regimes (40%, 60% and 80% of field capacity). The instantaneous plant water content was determined periodically by recording relative water content, water retention capacity, and water uptake capacity in leaves while the cumulative water stress and water use efficiency (WUE) were determined from aboveground δ13C signatures and amount of water applied, respectively. The yield and yield attributes were also recorded. Results showed that across all drought treatments, biochar application significantly enhanced crop growth rate and increased total biomass production with a doubling in yield in the 100 t ha−1 biochar application. However, the seed yield did not increase with biochar application. Although biochar application improved WUE (biomass produced per unit of water applied), it most likely did not improve plant water uptake, since none of the measured plant water status indicators were affected by biochar. Instead, the enhanced biomass production may have been caused by an improvement in plant nutrition. Possibly, biochar application increased N acquisition through biological nitrogen fixation as there was a significant relationship between nitrogen (N) concentration in aboveground biomass and total biomass production. Moreover, application of biochar increased soil available potassium (K), and enhanced K uptake may have increased stress tolerance in soybean. Therefore, our findings show that biochar could improve plant performance in a clay soil by improving nutrient supply rather than by increasing water uptake.

Suggested Citation

  • Mannan, M.A. & Mia, Shamim & Halder, Eshita & Dijkstra, Feike A., 2021. "Biochar application rate does not improve plant water availability in soybean under drought stress," Agricultural Water Management, Elsevier, vol. 253(C).
  • Handle: RePEc:eee:agiwat:v:253:y:2021:i:c:s0378377421002055
    DOI: 10.1016/j.agwat.2021.106940
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377421002055
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2021.106940?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wang, Linlin & Li, Qiang & Coulter, Jeffrey A. & Xie, Junhong & Luo, Zhuzhu & Zhang, Renzhi & Deng, Xiping & Li, Linglin, 2020. "Winter wheat yield and water use efficiency response to organic fertilization in northern China: A meta-analysis," Agricultural Water Management, Elsevier, vol. 229(C).
    2. Faloye, O.T. & Alatise, M.O. & Ajayi, A.E. & Ewulo, B.S., 2019. "Effects of biochar and inorganic fertiliser applications on growth, yield and water use efficiency of maize under deficit irrigation," Agricultural Water Management, Elsevier, vol. 217(C), pages 165-178.
    3. Ningning Ma & Lili Zhang & Yulan Zhang & Lijie Yang & Chunxiao Yu & Guanghua Yin & Timothy A Doane & Zhijie Wu & Ping Zhu & Xingzhu Ma, 2016. "Biochar Improves Soil Aggregate Stability and Water Availability in a Mollisol after Three Years of Field Application," PLOS ONE, Public Library of Science, vol. 11(5), pages 1-10, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Md. Abdul Mannan & Ferdousi Begum & Md. Abdullah Al Mamun & Md. Ahsan Habib, 2023. "Evaluation of Maize ( Zea mays ) Genotypes forTolerance to Drought using Yield Based Tolerance Indices," Journal of Agriculture and Crops, Academic Research Publishing Group, vol. 9(3), pages 329-337, 07-2023.
    2. Ruan, Renjie & Wang, Yaosheng, 2024. "Effects of biochar amendment on root growth and plant water status depend on maize genotypes," Agricultural Water Management, Elsevier, vol. 293(C).
    3. Jing, Lanshu & Weng, Baisha & Yan, Denghua & Yuan, Fei & Zhang, Shanjun & Bi, Wuxia & Yan, Siying, 2023. "Assessment of resilience in maize suitable planting areas under drought stress," Agricultural Water Management, Elsevier, vol. 277(C).
    4. Liu, Xuezhi & Manevski, Kiril & Liu, Fulai & Andersen, Mathias Neumann, 2022. "Biomass accumulation and water use efficiency of faba bean-ryegrass intercropping system on sandy soil amended with biochar under reduced irrigation regimes," Agricultural Water Management, Elsevier, vol. 273(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zenghui Sun & Ya Hu & Lei Shi & Gang Li & Zhe Pang & Siqi Liu & Yamiao Chen & Baobao Jia, 2022. "Effects of biochar on soil chemical properties: A global meta-analysis of agricultural soil," Plant, Soil and Environment, Czech Academy of Agricultural Sciences, vol. 68(6), pages 272-289.
    2. Rathore, Vijay Singh & Nathawat, Narayan Singh & Bhardwaj, Seema & Yadav, Bhagirath Mal & Santra, Priyabrata & Kumar, Mahesh & Shekhawat, Ravindra Singh & Reager, Madan Lal & Yadav, Shish Ram & Lal, B, 2022. "Alternative cropping systems and optimized management practices for saving groundwater and enhancing economic and environmental sustainability," Agricultural Water Management, Elsevier, vol. 272(C).
    3. Khushbu Kumari & Raushan Kumar & Nirmali Bordoloi & Tatiana Minkina & Chetan Keswani & Kuldeep Bauddh, 2023. "Unravelling the Recent Developments in the Production Technology and Efficient Applications of Biochar for Agro-Ecosystems," Agriculture, MDPI, vol. 13(3), pages 1-26, February.
    4. Wang, Haidong & Wang, Naijiang & Quan, Hao & Zhang, Fucang & Fan, Junliang & Feng, Hao & Cheng, Minghui & Liao, Zhenqi & Wang, Xiukang & Xiang, Youzhen, 2022. "Yield and water productivity of crops, vegetables and fruits under subsurface drip irrigation: A global meta-analysis," Agricultural Water Management, Elsevier, vol. 269(C).
    5. Franco Curadelli & Marcelo Alberto & Ernesto Martín Uliarte & Mariana Combina & Iván Funes-Pinter, 2023. "Meta-Analysis of Yields of Crops Fertilized with Compost Tea and Anaerobic Digestate," Sustainability, MDPI, vol. 15(2), pages 1-23, January.
    6. Zouhair Elkhlifi & Jerosha Iftikhar & Mohammad Sarraf & Baber Ali & Muhammad Hamzah Saleem & Irshad Ibranshahib & Mozart Daltro Bispo & Lucas Meili & Sezai Ercisli & Ehlinaz Torun Kayabasi & Naser Ale, 2023. "Potential Role of Biochar on Capturing Soil Nutrients, Carbon Sequestration and Managing Environmental Challenges: A Review," Sustainability, MDPI, vol. 15(3), pages 1-18, January.
    7. Zhang, Cong & Huang, Xian & Zhang, Xingwei & Wan, Li & Wang, Zhenhong, 2021. "Effects of biochar application on soil nitrogen and phosphorous leaching loss and oil peony growth," Agricultural Water Management, Elsevier, vol. 255(C).
    8. Wang, Linlin & Li, Lingling & Xie, Junhong & Luo, Zhuzhu & Sumera, Anwar & Zechariah, Effah & Fudjoe, Setor Kwami & Palta, Jairo A. & Chen, Yinglong, 2022. "Does plastic mulching reduce water footprint in field crops in China? A meta-analysis," Agricultural Water Management, Elsevier, vol. 260(C).
    9. Liu, Xuezhi & Manevski, Kiril & Liu, Fulai & Andersen, Mathias Neumann, 2022. "Biomass accumulation and water use efficiency of faba bean-ryegrass intercropping system on sandy soil amended with biochar under reduced irrigation regimes," Agricultural Water Management, Elsevier, vol. 273(C).
    10. Junhong Xie & Linlin Wang & Lingling Li & Sumera Anwar & Zhuzhu Luo & Effah Zechariah & Setor Kwami Fudjoe, 2021. "Yield, Economic Benefit, Soil Water Balance, and Water Use Efficiency of Intercropped Maize/Potato in Responses to Mulching Practices on the Semiarid Loess Plateau," Agriculture, MDPI, vol. 11(11), pages 1-16, November.
    11. Zhang, Pengyan & Liu, Jiangzhou & Wang, Maodong & Zhang, Haocheng & Yang, Nan & Ma, Jing & Cai, Huanjie, 2024. "Effects of irrigation and fertilization with biochar on the growth, yield, and water/nitrogen use of maize on the Guanzhong Plain, China," Agricultural Water Management, Elsevier, vol. 295(C).
    12. Vasileios Tsolis & Pantelis Barouchas, 2023. "Biochar as Soil Amendment: The Effect of Biochar on Soil Properties Using VIS-NIR Diffuse Reflectance Spectroscopy, Biochar Aging and Soil Microbiology—A Review," Land, MDPI, vol. 12(8), pages 1-41, August.
    13. Gao, Jia & Zhang, Yingjun & Xu, Chenchen & Wang, Pu & Huang, Shoubing & Lv, Yanjie, 2024. "Enhancing spatial and temporal coordination of soil water and root growth to improve maize (Zea mays L.) yield," Agricultural Water Management, Elsevier, vol. 294(C).
    14. Wei Huang & Yangwen Jia & Cunwen Niu & Hexi Zhang & Yongtao Wang & Cheng Feng, 2024. "Effects of Carbon-Based Modified Materials on Soil Water and Fertilizer Retention and Pollution Control in Rice Root Zone," Sustainability, MDPI, vol. 16(16), pages 1-17, August.
    15. Yan, Shicheng & Wu, You & Fan, Junliang & Zhang, Fucang & Guo, Jinjin & Zheng, Jing & Wu, Lifeng & Lu, Junsheng, 2022. "Quantifying nutrient stoichiometry and radiation use efficiency of two maize cultivars under various water and fertilizer management practices in northwest China," Agricultural Water Management, Elsevier, vol. 271(C).
    16. Singh, Manpreet & Singh, Sukhbir & Deb, Sanjit & Ritchie, Glen, 2023. "Root distribution, soil water depletion, and water productivity of sweet corn under deficit irrigation and biochar application," Agricultural Water Management, Elsevier, vol. 279(C).
    17. Jiaxin Wang & Xinlin He & Ping Gong & Danqi Zhao & Yao Zhang & Zonglan Wang & Jingrui Zhang, 2022. "Optimization of a Water-Saving and Fertilizer-Saving Model for Enhancing Xinjiang Korla Fragrant Pear Yield, Quality, and Net Profits under Water and Fertilizer Coupling," Sustainability, MDPI, vol. 14(14), pages 1-21, July.
    18. Zhang, Chuan & Li, Xinyu & Yan, Haofang & Ullah, Ikram & Zuo, Zhiyu & Li, Lanlan & Yu, Jianjun, 2020. "Effects of irrigation quantity and biochar on soil physical properties, growth characteristics, yield and quality of greenhouse tomato," Agricultural Water Management, Elsevier, vol. 241(C).
    19. Ke, Zengming & Liu, Xiaoli & Ma, Lihui & Feng, Zhe & Tu, Wen & Dong, Qin’ge & Jiao, Feng & Wang, Zhanli, 2021. "Rainstorm events increase risk of soil salinization in a loess hilly region of China," Agricultural Water Management, Elsevier, vol. 256(C).
    20. Yang, Shanshan & Zhang, Jiahua & Wang, Jingwen & Zhang, Sha & Bai, Yun & Shi, Siqi & Cao, Dan, 2022. "Spatiotemporal variations of water productivity for cropland and driving factors over China during 2001–2015," Agricultural Water Management, Elsevier, vol. 262(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:253:y:2021:i:c:s0378377421002055. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.