IDEAS home Printed from https://ideas.repec.org/p/ags/iwmirp/329157.html
   My bibliography  Save this paper

Resilience in agro-ecological landscapes: process principles and outcome indicators

Author

Listed:
  • Fabricius, C.
  • Novellie, P.
  • Ringler, C.
  • Uhlenbrook, Stefan
  • Wright, D.

Abstract

This paper explores outcome indicators and process principles to evaluate landscape resilience in agro-ecosystems, drawing on outcome indicator case studies of the CGIAR Research Program on Water, Land and Ecosystems (WLE). Four questions are addressed: (1) which outcome indicators and process principles feature most prominently in the seminal literature on resilient agro-ecological landscapes? (2) to what extent are these principles represented in CGIAR Outcome Impact Case Reports (OICRs) and selected peer-reviewed studies? (3) how does the use of process principles in the case studies compare to their occurrence in the theoretical literature? and (4) which process principles co-occur with related outcome indicators in the OICRs? The findings enable researchers and practitioners to be more specific about the outcomes and processes that drive resilience in agro-ecosystems, thereby informing adaptive program management. Seven novel research themes are proposed.

Suggested Citation

  • Fabricius, C. & Novellie, P. & Ringler, C. & Uhlenbrook, Stefan & Wright, D., 2022. "Resilience in agro-ecological landscapes: process principles and outcome indicators," IWMI Reports 329157, International Water Management Institute.
  • Handle: RePEc:ags:iwmirp:329157
    DOI: 10.22004/ag.econ.329157
    as

    Download full text from publisher

    File URL: https://ageconsearch.umn.edu/record/329157/files/H050974.pdf
    Download Restriction: no

    File URL: https://libkey.io/10.22004/ag.econ.329157?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Ian Bailey & Louise E. Buck, 2016. "Managing for resilience: a landscape framework for food and livelihood security and ecosystem services," Food Security: The Science, Sociology and Economics of Food Production and Access to Food, Springer;The International Society for Plant Pathology, vol. 8(3), pages 477-490, June.
    2. Peterson, Caitlin A. & Eviner, Valerie T. & Gaudin, Amélie C.M., 2018. "Ways forward for resilience research in agroecosystems," Agricultural Systems, Elsevier, vol. 162(C), pages 19-27.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Marcela Prokopová & Luca Salvati & Gianluca Egidi & Ondřej Cudlín & Renata Včeláková & Radek Plch & Pavel Cudlín, 2019. "Envisioning Present and Future Land-Use Change under Varying Ecological Regimes and Their Influence on Landscape Stability," Sustainability, MDPI, vol. 11(17), pages 1-24, August.
    2. Daniele, Bertolozzi-Caredio & Barbara, Soriano & Isabel, Bardaji & Alberto, Garrido, 2022. "Analysis of perceived robustness, adaptability and transformability of Spanish extensive livestock farms under alternative challenging scenarios," Agricultural Systems, Elsevier, vol. 202(C).
    3. Salla Eilola & Lalisa Duguma & Niina Käyhkö & Peter A. Minang, 2021. "Coalitions for Landscape Resilience: Institutional Dynamics behind Community-Based Rangeland Management System in North-Western Tanzania," Sustainability, MDPI, vol. 13(19), pages 1-23, October.
    4. Kaye-Blake, William & Stirrat, Kelly & Smith, Matt & Fielke, Simon, 2017. "Testing indicators of resilience for rural communities," 2017 Conference, October 19-20, Rotorua, New Zealand 269523, New Zealand Agricultural and Resource Economics Society.
    5. Hongzhang Xu & Meng Peng & Jamie Pittock & Jiayu Xu, 2021. "Managing Rather Than Avoiding “Difficulties” in Building Landscape Resilience," Sustainability, MDPI, vol. 13(5), pages 1-24, March.
    6. Hang Zhang & Hai Chen & Tianwei Geng & Di Liu & Qinqin Shi, 2020. "Evolutionary Characteristics and Trade-Offs’ Development of Social–Ecological Production Landscapes in the Loess Plateau Region from a Resilience Point of View: A Case Study in Mizhi County, China," IJERPH, MDPI, vol. 17(4), pages 1-17, February.
    7. Tim Seipel & Suzanne L. Ishaq & Christian Larson & Fabian D. Menalled, 2022. "Weed Communities in Winter Wheat: Responses to Cropping Systems under Different Climatic Conditions," Sustainability, MDPI, vol. 14(11), pages 1-13, June.
    8. Hejie Wei & Jiaxin Zheng & Dong Xue & Xiaobin Dong & Mengxue Liu & Yali Zhang, 2022. "Identifying the Relationship between Livelihoods and Land Ecosystem Services Using a Coupled Model: A Case Study in the “One River and Two Tributaries” Region of Tibet," Land, MDPI, vol. 11(9), pages 1-23, August.
    9. Bishawjit Mallick & Chup Priovashini & Jochen Schanze, 2023. "“I can migrate, but why should I?”—voluntary non-migration despite creeping environmental risks," Palgrave Communications, Palgrave Macmillan, vol. 10(1), pages 1-14, December.
    10. Yevheniia Varyvoda & Douglas Taren, 2022. "Considering Ecosystem Services in Food System Resilience," IJERPH, MDPI, vol. 19(6), pages 1-16, March.
    11. Manyise, Timothy & Dentoni, Domenico, 2021. "Value chain partnerships and farmer entrepreneurship as balancing ecosystem services: Implications for agri-food systems resilience," Ecosystem Services, Elsevier, vol. 49(C).
    12. Douglas Gollin, 2020. "Conserving genetic resources for agriculture: economic implications of emerging science," Food Security: The Science, Sociology and Economics of Food Production and Access to Food, Springer;The International Society for Plant Pathology, vol. 12(5), pages 919-927, October.
    13. Fielke, Simon J. & Kaye-Blake, William & Mackay, Alec & Smith, Willie & Rendel, John & Dominati, Estelle, 2018. "Learning from resilience research: Findings from four projects in New Zealand," Land Use Policy, Elsevier, vol. 70(C), pages 322-333.
    14. Szymczak, Leonardo Silvestri & Carvalho, Paulo César de Faccio & Lurette, Amandine & Moraes, Anibal de & Nunes, Pedro Arthur de Albuquerque & Martins, Amanda Posselt & Moulin, Charles-Henri, 2020. "System diversification and grazing management as resilience-enhancing agricultural practices: The case of crop-livestock integration," Agricultural Systems, Elsevier, vol. 184(C).
    15. Roger R. B. Leakey, 2018. "Converting ‘trade-offs’ to ‘trade-ons’ for greatly enhanced food security in Africa: multiple environmental, economic and social benefits from ‘socially modified crops’," Food Security: The Science, Sociology and Economics of Food Production and Access to Food, Springer;The International Society for Plant Pathology, vol. 10(3), pages 505-524, June.
    16. Norman Siebrecht, 2020. "Sustainable Agriculture and Its Implementation Gap—Overcoming Obstacles to Implementation," Sustainability, MDPI, vol. 12(9), pages 1-27, May.
    17. Gupte, Jaideep & Longhurst, Richard, 2019. "How do the state’s organisational capacities at the micro- and macro-levels influence agriculture-nutrition linkages in fragile contexts?," Food Policy, Elsevier, vol. 82(C), pages 74-83.
    18. Adam M. Komarek, 2018. "Conservation agriculture in western China increases productivity and profits without decreasing resilience," Food Security: The Science, Sociology and Economics of Food Production and Access to Food, Springer;The International Society for Plant Pathology, vol. 10(5), pages 1251-1262, October.
    19. Subodh Adhikari & Arjun Adhikari & David K. Weaver & Anton Bekkerman & Fabian D. Menalled, 2019. "Impacts of Agricultural Management Systems on Biodiversity and Ecosystem Services in Highly Simplified Dryland Landscapes," Sustainability, MDPI, vol. 11(11), pages 1-16, June.
    20. A. Koocheki & M. Nassiri Mahallati & M. Bannayan & F. Yaghoubi, 2022. "Simulating resilience of rainfed wheat–based cropping systems of Iran under future climate change," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 27(4), pages 1-30, April.

    More about this item

    Keywords

    Agribusiness; Agricultural Finance; Farm Management; Financial Economics; Production Economics; Research and Development/Tech Change/Emerging Technologies;
    All these keywords.

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ags:iwmirp:329157. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: AgEcon Search (email available below). General contact details of provider: https://edirc.repec.org/data/iwmiclk.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.