IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v273y2022ics0378377422004528.html
   My bibliography  Save this article

Biomass accumulation and water use efficiency of faba bean-ryegrass intercropping system on sandy soil amended with biochar under reduced irrigation regimes

Author

Listed:
  • Liu, Xuezhi
  • Manevski, Kiril
  • Liu, Fulai
  • Andersen, Mathias Neumann

Abstract

Intercropping is advantageous for optimizing crop productivity and resources utilization efficiency compared to monocultures. Yet, the effects of water/fertilizer management on crop growth and water use efficiency (WUE) in intercropping systems composed of legumes and non-legumes remain largely elusive. Biochar, as a soil amendment, could increase soil water storage and crop yield, but its interaction with soil water deficit and response of WUE are ambiguous. We investigated the growth, biomass and WUE in faba bean-ryegrass intercropping system amended with 550 ℃-pyrolyzed wheat straw (WSBC) and 800 ℃-pyrolyzed cleaning residues biochar (CRBC) under different irrigation treatments. Compared to the no biochar controls, CRBC decreased aboveground biomass (FDM) and seed yield (FGY) of intercropped faba bean, despite improved soil water-holding capacity, leaf water potential (LWP) and leaf hydraulic conductance (Kl) of faba bean. In contrast, CRBC significantly increased ryegrass aboveground biomass (GDM), although reduced the total aboveground biomass (TDM) and WUE (WUEf+g) of faba bean-ryegrass mixtures. These effects were not evident under WSBC. Compared to full irrigation, deficit (DI) and partial root-zone drying (PRD) irrigation enhanced GDM and WUEf+g, but lowered LWP and Kl, FDM and FGY, and PWU (plant water consumption) and TDM. Despite lower maximum quantum yield of photosystem II, PRD outperformed DI in improving biomass and WUE. The principal component analysis showed that PWU rather than biomass contributed significantly to the enhanced WUEf+g under DI and particularly PRD. Moreover, reduced irrigation regimes limited photosynthetic capacity of faba bean by depressing apparent quantum yield and increasing light compensation point, yet biochar addition did not. It was concluded that biochar produced at high temperatures might not be conducive in improving WUE of faba ban-ryegrass intercropping. Instead, PRD could be a prospective option to offset the adverse effect of biochar on plant under water-scarcity conditions.

Suggested Citation

  • Liu, Xuezhi & Manevski, Kiril & Liu, Fulai & Andersen, Mathias Neumann, 2022. "Biomass accumulation and water use efficiency of faba bean-ryegrass intercropping system on sandy soil amended with biochar under reduced irrigation regimes," Agricultural Water Management, Elsevier, vol. 273(C).
  • Handle: RePEc:eee:agiwat:v:273:y:2022:i:c:s0378377422004528
    DOI: 10.1016/j.agwat.2022.107905
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377422004528
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2022.107905?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Liu, Rui & Yang, Yu & Wang, Yao-sheng & Wang, Xing-Chen & Rengel, Zed & Zhang, Wen-Ju & Shu, Liang-Zuo, 2020. "Alternate partial root-zone drip irrigation with nitrogen fertigation promoted tomato growth, water and fertilizer-nitrogen use efficiency," Agricultural Water Management, Elsevier, vol. 233(C).
    2. Akhtar, Saqib Saleem & Andersen, Mathias Neumann & Liu, Fulai, 2015. "Residual effects of biochar on improving growth, physiology and yield of wheat under salt stress," Agricultural Water Management, Elsevier, vol. 158(C), pages 61-68.
    3. Fernández, J.E. & Alcon, F. & Diaz-Espejo, A. & Hernandez-Santana, V. & Cuevas, M.V., 2020. "Water use indicators and economic analysis for on-farm irrigation decision: A case study of a super high density olive tree orchard," Agricultural Water Management, Elsevier, vol. 237(C).
    4. Faloye, O.T. & Alatise, M.O. & Ajayi, A.E. & Ewulo, B.S., 2019. "Effects of biochar and inorganic fertiliser applications on growth, yield and water use efficiency of maize under deficit irrigation," Agricultural Water Management, Elsevier, vol. 217(C), pages 165-178.
    5. Wang, Yaosheng & Jensen, Christian R. & Liu, Fulai, 2017. "Nutritional responses to soil drying and rewetting cycles under partial root-zone drying irrigation," Agricultural Water Management, Elsevier, vol. 179(C), pages 254-259.
    6. Mannan, M.A. & Mia, Shamim & Halder, Eshita & Dijkstra, Feike A., 2021. "Biochar application rate does not improve plant water availability in soybean under drought stress," Agricultural Water Management, Elsevier, vol. 253(C).
    7. Abrisqueta, J.M. & Mounzer, O. & Álvarez, S. & Conejero, W. & Garci­a-Orellana, Y. & Tapia, L.M. & Vera, J. & Abrisqueta, I. & Ruiz-Sánchez, M.C., 2008. "Root dynamics of peach trees submitted to partial rootzone drying and continuous deficit irrigation," Agricultural Water Management, Elsevier, vol. 95(8), pages 959-967, August.
    8. Wei, Zhenhua & Du, Taisheng & Li, Xiangnan & Fang, Liang & Liu, Fulai, 2018. "Interactive effects of CO2 concentration elevation and nitrogen fertilization on water and nitrogen use efficiency of tomato grown under reduced irrigation regimes," Agricultural Water Management, Elsevier, vol. 202(C), pages 174-182.
    9. Liu, Caixia & Rubæk, Gitte H. & Liu, Fulai & Andersen, Mathias N., 2015. "Effect of partial root zone drying and deficit irrigation on nitrogen and phosphorus uptake in potato," Agricultural Water Management, Elsevier, vol. 159(C), pages 66-76.
    10. Gencoglan, Cafer & Altunbey, Hasibe & Gencoglan, Serpil, 2006. "Response of green bean (P. vulgaris L.) to subsurface drip irrigation and partial rootzone-drying irrigation," Agricultural Water Management, Elsevier, vol. 84(3), pages 274-280, August.
    11. Yang, Xin & Bornø, Marie Louise & Wei, Zhenhua & Liu, Fulai, 2021. "Combined effect of partial root drying and elevated atmospheric CO2 on the physiology and fruit quality of two genotypes of tomato plants with contrasting endogenous ABA levels," Agricultural Water Management, Elsevier, vol. 254(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hou, Jingxiang & Liu, Xuezhi & Zhang, Jiarui & Wei, Zhenhua & Ma, Yingying & Wan, Heng & Liu, Jie & Cui, Bingjing & Zong, Yuzheng & Chen, Yiting & Liang, Kehao & Liu, Fulai, 2023. "Combined application of biochar and partial root-zone drying irrigation improves water relations and water use efficiency of cotton plants under salt stress," Agricultural Water Management, Elsevier, vol. 290(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Yadong & Liu, Chun & Cui, Pengfei & Su, Derong, 2021. "Effects of partial root-zone drying on alfalfa growth, yield and quality under subsurface drip irrigation," Agricultural Water Management, Elsevier, vol. 245(C).
    2. Sun, Xiaolei & Yang, Xiaosong & Hu, Zhengyi & Liu, Fulai & Xie, Zijian & Li, Songyan & Wang, Guoxi & Li, Meng & Sun, Zheng & Bol, Roland, 2024. "Biochar effects on soil nitrogen retention, leaching and yield of perennial citron daylily under three irrigation regimes," Agricultural Water Management, Elsevier, vol. 296(C).
    3. Khushbu Kumari & Raushan Kumar & Nirmali Bordoloi & Tatiana Minkina & Chetan Keswani & Kuldeep Bauddh, 2023. "Unravelling the Recent Developments in the Production Technology and Efficient Applications of Biochar for Agro-Ecosystems," Agriculture, MDPI, vol. 13(3), pages 1-26, February.
    4. Chen, Yu & Zhang, Jian-Hua & Chen, Mo-Xian & Zhu, Fu-Yuan & Song, Tao, 2023. "Optimizing water conservation and utilization with a regulated deficit irrigation strategy in woody crops: A review," Agricultural Water Management, Elsevier, vol. 289(C).
    5. Zhang, Cong & Huang, Xian & Zhang, Xingwei & Wan, Li & Wang, Zhenhong, 2021. "Effects of biochar application on soil nitrogen and phosphorous leaching loss and oil peony growth," Agricultural Water Management, Elsevier, vol. 255(C).
    6. Liu, Kai & Liao, Huan & Hao, Haibo & Hou, Zhenan, 2024. "Water and nitrogen supply at spatially distinct locations improves cotton water productivity and nitrogen use efficiency and yield under drip irrigation," Agricultural Water Management, Elsevier, vol. 296(C).
    7. Wang, Yaosheng & Janz, Baldur & Engedal, Tine & Neergaard, Andreas de, 2017. "Effect of irrigation regimes and nitrogen rates on water use efficiency and nitrogen uptake in maize," Agricultural Water Management, Elsevier, vol. 179(C), pages 271-276.
    8. Wang, Yaosheng & Jensen, Christian R. & Liu, Fulai, 2017. "Nutritional responses to soil drying and rewetting cycles under partial root-zone drying irrigation," Agricultural Water Management, Elsevier, vol. 179(C), pages 254-259.
    9. Singh, Manpreet & Singh, Sukhbir & Deb, Sanjit & Ritchie, Glen, 2023. "Root distribution, soil water depletion, and water productivity of sweet corn under deficit irrigation and biochar application," Agricultural Water Management, Elsevier, vol. 279(C).
    10. Jiao, Fengli & Ding, Risheng & Du, Taisheng & Kang, Jian & Tong, Ling & Gao, Jia & Shao, Jie, 2024. "Multi-growth stage regulated deficit irrigation improves maize water productivity in an arid region of China," Agricultural Water Management, Elsevier, vol. 297(C).
    11. Topak, Ramazan & Acar, Bilal & Uyanöz, Refik & Ceyhan, Ercan, 2016. "Performance of partial root-zone drip irrigation for sugar beet production in a semi-arid area," Agricultural Water Management, Elsevier, vol. 176(C), pages 180-190.
    12. Kang, Jian & Hao, Xinmei & Zhou, Huiping & Ding, Risheng, 2021. "An integrated strategy for improving water use efficiency by understanding physiological mechanisms of crops responding to water deficit: Present and prospect," Agricultural Water Management, Elsevier, vol. 255(C).
    13. Chrysargyris, Antonios & Tzortzakis, Nikolaos, 2023. "Optimising fertigation of hydroponically grown sowthistle (Sonchus oleraceus L.): The impact of the nitrogen source and supply concentration," Agricultural Water Management, Elsevier, vol. 289(C).
    14. Yang, Xin & Bornø, Marie Louise & Wei, Zhenhua & Liu, Fulai, 2021. "Combined effect of partial root drying and elevated atmospheric CO2 on the physiology and fruit quality of two genotypes of tomato plants with contrasting endogenous ABA levels," Agricultural Water Management, Elsevier, vol. 254(C).
    15. Arbizu-Milagro, Julia & Castillo-Ruiz, Francisco J. & Tascón, Alberto & Peña, Jose M., 2023. "Effects of regulated, precision and continuous deficit irrigation on the growth and productivity of a young super high-density olive orchard," Agricultural Water Management, Elsevier, vol. 286(C).
    16. Wang, Haidong & Cheng, Minghui & Liao, Zhenqi & Guo, Jinjin & Zhang, Fucang & Fan, Junliang & Feng, Hao & Yang, Qiliang & Wu, Lifeng & Wang, Xiukang, 2023. "Performance evaluation of AquaCrop and DSSAT-SUBSTOR-Potato models in simulating potato growth, yield and water productivity under various drip fertigation regimes," Agricultural Water Management, Elsevier, vol. 276(C).
    17. Darouich, Hanaa & Karfoul, Razan & Ramos, Tiago B. & Moustafa, Ali & Shaheen, Baraa & Pereira, Luis S., 2021. "Crop water requirements and crop coefficients for jute mallow (Corchorus olitorius L.) using the SIMDualKc model and assessing irrigation strategies for the Syrian Akkar region," Agricultural Water Management, Elsevier, vol. 255(C).
    18. Gao, Zhaoquan & Fan, Jiangchuan & Li, Zhiqiang, 2021. "Dynamic simulation water storage of different parts in peach tree under drought stress," Agricultural Water Management, Elsevier, vol. 244(C).
    19. Marta Wyzińska & Adam Kleofas Berbeć & Jerzy Grabiński, 2023. "Impact of Biochar Dose and Origin on Winter Wheat Grain Quality and Quantity," Agriculture, MDPI, vol. 14(1), pages 1-15, December.
    20. Feng, Z.Y. & Qin, T. & Du, X.Z. & Sheng, F. & Li, C.F., 2021. "Effects of irrigation regime and rice variety on greenhouse gas emissions and grain yields from paddy fields in central China," Agricultural Water Management, Elsevier, vol. 250(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:273:y:2022:i:c:s0378377422004528. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.