IDEAS home Printed from https://ideas.repec.org/a/caa/jnlpse/v68y2022i8id151-2022-pse.html
   My bibliography  Save this article

Improving quantity and quality of sugar beet yield using agronomic methods in summer cultivation

Author

Listed:
  • Reza Esmaeili

    (Department of Horticultural Science and Agronomy, Science and Research Branch, Islamic Azad University, Tehran, Iran)

  • Rahim Mohammadian

    (Sugar Beet Seed Institute, Agricultural Research, Education and Extension Organisation)

  • Hossein Heidari Sharif Abad

    (Department of Horticultural Science and Agronomy, Science and Research Branch, Islamic Azad University, Tehran, Iran)

  • Ghorban Noor Mohammadi

    (Department of Horticultural Science and Agronomy, Science and Research Branch, Islamic Azad University, Tehran, Iran)

Abstract

The effect of agronomic factors on the amount of water consumption and its productivity in arid and semiarid regions is very important. This study was conducted to diagnose agronomical procedures for increasing the yield and water productivity of sugar beet in two years (2016 and 2017). The experimental factors were: sowing date (spring and summer), planting arrangement (25-50 cm and 40-50 cm, double rows with a distance of 25 cm or 40 cm and a distance between each double row of 50 cm), and plant density (90, 120 and 160 thousand plant/ha). In the second year, the harvesting date, which consisted of conventional (October) and delayed (November), was added to the experiment. High temperature during and immediately after planting decreased emergence on the summer sowing date. The uniformity of roots and irrigation water productivity (WPirrig) in spring crops was higher than those of summer crops; meanwhile, on the summer sowing date, water consumption declined by 27% (and the sugar yield decreased intensively by 44%). Furthermore, planting arrangements of 25-50 resulted in better plant establishment and eventually increased the number of final plants. Besides, increasing plant density improved the uniformity of plants root. Sowing in summer compared to spring reduced root and sugar yield on a conventional harvesting date by about 40%. After 25 days' delay in harvesting time on both sowing dates (by mean), root yield, sugar yield, and WPirrig, increased by about 14, 28 and 22%, respectively. In general, at moderate densities (about 120 000), planting arrangement 40-50 and at low densities (less than 90 000, which usually occurs on the summer sowing date), planting arrangement 25-50 is recommended to increase yield and WPirrig.

Suggested Citation

  • Reza Esmaeili & Rahim Mohammadian & Hossein Heidari Sharif Abad & Ghorban Noor Mohammadi, 2022. "Improving quantity and quality of sugar beet yield using agronomic methods in summer cultivation," Plant, Soil and Environment, Czech Academy of Agricultural Sciences, vol. 68(8), pages 347-357.
  • Handle: RePEc:caa:jnlpse:v:68:y:2022:i:8:id:151-2022-pse
    DOI: 10.17221/151/2022-PSE
    as

    Download full text from publisher

    File URL: http://pse.agriculturejournals.cz/doi/10.17221/151/2022-PSE.html
    Download Restriction: free of charge

    File URL: http://pse.agriculturejournals.cz/doi/10.17221/151/2022-PSE.pdf
    Download Restriction: free of charge

    File URL: https://libkey.io/10.17221/151/2022-PSE?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Pereira, Luis S. & Cordery, Ian & Iacovides, Iacovos, 2012. "Improved indicators of water use performance and productivity for sustainable water conservation and saving," Agricultural Water Management, Elsevier, vol. 108(C), pages 39-51.
    2. Florio, E.L. & Mercau, J.L. & Jobbágy, E.G. & Nosetto, M.D., 2014. "Interactive effects of water-table depth, rainfall variation, and sowing date on maize production in the Western Pampas," Agricultural Water Management, Elsevier, vol. 146(C), pages 75-83.
    3. Badr, M.A. & Abou-Hussein, S.D. & El-Tohamy, W.A., 2016. "Tomato yield, nitrogen uptake and water use efficiency as affected by planting geometry and level of nitrogen in an arid region," Agricultural Water Management, Elsevier, vol. 169(C), pages 90-97.
    4. Mohammadian, R. & Sadeghian, S.Y. & Rahimian, H. & Moghadam, M., 2008. "Reduced water consumption of dormant-seeded sugar beet in a semiarid climate," Agricultural Water Management, Elsevier, vol. 95(5), pages 545-552, May.
    5. Li, Yangyang & Liu, Ningning & Fan, Hua & Su, Jixia & Fei, Cong & Wang, Kaiyong & Ma, Fuyu & Kisekka, Isaya, 2019. "Effects of deficit irrigation on photosynthesis, photosynthate allocation, and water use efficiency of sugar beet," Agricultural Water Management, Elsevier, vol. 223(C), pages 1-1.
    6. L. Jozefyová & J. Pulkrábek & J. Urban, 2003. "The influence of harvest date and crop treatment on the production of two different sugar beet variety types," Plant, Soil and Environment, Czech Academy of Agricultural Sciences, vol. 49(11), pages 492-498.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Khozaei, Maryam & Kamgar Haghighi, Ali Akbar & Zand Parsa, Shahrokh & Sepaskhah, Ali Reza & Razzaghi, Fatemeh & Yousefabadi, Vali-allah & Emam, Yahya, 2020. "Evaluation of direct seeding and transplanting in sugar beet for water productivity, yield and quality under different irrigation regimes and planting densities," Agricultural Water Management, Elsevier, vol. 238(C).
    2. Ren, Dongyang & Xu, Xu & Engel, Bernard & Huang, Quanzhong & Xiong, Yunwu & Huo, Zailin & Huang, Guanhua, 2021. "A comprehensive analysis of water productivity in natural vegetation and various crops coexistent agro-ecosystems," Agricultural Water Management, Elsevier, vol. 243(C).
    3. Al Zayed, Islam Sabry & Elagib, Nadir Ahmed & Ribbe, Lars & Heinrich, Jürgen, 2016. "Satellite-based evapotranspiration over Gezira Irrigation Scheme, Sudan: A comparative study," Agricultural Water Management, Elsevier, vol. 177(C), pages 66-76.
    4. Ierna, Anita & Mauromicale, Giovanni, 2018. "Potato growth, yield and water productivity response to different irrigation and fertilization regimes," Agricultural Water Management, Elsevier, vol. 201(C), pages 21-26.
    5. Cameira, Maria do Rosário & Rodrigo, Isabel & Garção, Andreia & Neves, Manuela & Ferreira, Antónia & Paredes, Paula, 2024. "Linking participatory approach and rapid appraisal methods to select potential innovations in collective irrigation systems," Agricultural Water Management, Elsevier, vol. 299(C).
    6. Fraga, H. & García de Cortázar Atauri, I. & Santos, J.A, 2018. "Viticultural irrigation demands under climate change scenarios in Portugal," Agricultural Water Management, Elsevier, vol. 196(C), pages 66-74.
    7. Darouich, Hanaa & Karfoul, Razan & Ramos, Tiago B. & Moustafa, Ali & Shaheen, Baraa & Pereira, Luis S., 2021. "Crop water requirements and crop coefficients for jute mallow (Corchorus olitorius L.) using the SIMDualKc model and assessing irrigation strategies for the Syrian Akkar region," Agricultural Water Management, Elsevier, vol. 255(C).
    8. Qu, Feng & Zhang, Qi & Jiang, Zhaoxi & Zhang, Caihong & Zhang, Zhi & Hu, Xiaohui, 2022. "Optimizing irrigation and fertilization frequency for greenhouse cucumber grown at different air temperatures using a comprehensive evaluation model," Agricultural Water Management, Elsevier, vol. 273(C).
    9. Gao, Yang & Yang, Linlin & Shen, Xiaojun & Li, Xinqiang & Sun, Jingsheng & Duan, Aiwang & Wu, Laosheng, 2014. "Winter wheat with subsurface drip irrigation (SDI): Crop coefficients, water-use estimates, and effects of SDI on grain yield and water use efficiency," Agricultural Water Management, Elsevier, vol. 146(C), pages 1-10.
    10. Nikolaos Gourgouletis & Marianna Gkavrou & Evangelos Baltas, 2023. "Comparison of Empirical ETo Relationships with ERA5-Land and In Situ Data in Greece," Geographies, MDPI, vol. 3(3), pages 1-23, August.
    11. Pelosi, A. & Chirico, G.B., 2021. "Regional assessment of daily reference evapotranspiration: Can ground observations be replaced by blending ERA5-Land meteorological reanalysis and CM-SAF satellite-based radiation data?," Agricultural Water Management, Elsevier, vol. 258(C).
    12. Manel Ben Hassen & Federica Monaco & Arianna Facchi & Marco Romani & Giampiero Valè & Guido Sali, 2017. "Economic Performance of Traditional and Modern Rice Varieties under Different Water Management Systems," Sustainability, MDPI, vol. 9(3), pages 1-10, February.
    13. Jovanovic, N. & Pereira, L.S. & Paredes, P. & Pôças, I. & Cantore, V. & Todorovic, M., 2020. "A review of strategies, methods and technologies to reduce non-beneficial consumptive water use on farms considering the FAO56 methods," Agricultural Water Management, Elsevier, vol. 239(C).
    14. Liu, Yi & Zeng, Wenzhi & Ao, Chang & Lei, Guoqing & Wu, Jingwei & Huang, Jiesheng & Gaiser, Thomas & Srivastava, Amit Kumar, 2022. "Optimization of winter irrigation management for salinized farmland using a coupled model of soil water flow and crop growth," Agricultural Water Management, Elsevier, vol. 270(C).
    15. Snyder, R.L. & Pedras, C. & Montazar, A. & Henry, J.M. & Ackley, D., 2015. "Advances in ET-based landscape irrigation management," Agricultural Water Management, Elsevier, vol. 147(C), pages 187-197.
    16. Cancela, Javier José & Trigo-Córdoba, Emiliano & Martínez, Emma María & Rey, Benjamín Jesús & Bouzas-Cid, Yolanda & Fandiño, María & Mirás-Avalos, José Manuel, 2016. "Effects of climate variability on irrigation scheduling in white varieties of Vitis vinifera (L.) of NW Spain," Agricultural Water Management, Elsevier, vol. 170(C), pages 99-109.
    17. Hunsaker, D.J. & French, A.N. & Waller, P.M. & Bautista, E. & Thorp, K.R. & Bronson, K.F. & Andrade-Sanchez, P., 2015. "Comparison of traditional and ET-based irrigation scheduling of surface-irrigated cotton in the arid southwestern USA," Agricultural Water Management, Elsevier, vol. 159(C), pages 209-224.
    18. Martínez-Gimeno, M.A. & Zahaf, A. & Badal, E. & Paz, S. & Bonet, L. & Pérez-Pérez, J.G., 2022. "Effect of progressive irrigation water reductions on super-high-density olive orchards according to different scarcity scenarios," Agricultural Water Management, Elsevier, vol. 262(C).
    19. Zhou, Qing & Zhang, Yali & Wu, Feng, 2021. "Evaluation of the most proper management scale on water use efficiency and water productivity: A case study of the Heihe River Basin, China," Agricultural Water Management, Elsevier, vol. 246(C).
    20. Rotili, Diego Hernán & Giorno, Agustín & Tognetti, Pedro Maximiliano & Maddonni, Gustavo Ángel, 2019. "Expansion of maize production in a semi-arid region of Argentina: Climatic and edaphic constraints and their implications on crop management," Agricultural Water Management, Elsevier, vol. 226(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:caa:jnlpse:v:68:y:2022:i:8:id:151-2022-pse. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Ivo Andrle (email available below). General contact details of provider: https://www.cazv.cz/en/home/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.