IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v260y2022ics0378377421005539.html
   My bibliography  Save this article

Assessing water distribution characteristics of a variable-rate irrigation system

Author

Listed:
  • Hui, Xin
  • Lin, Xueji
  • Zhao, Yue
  • Xue, Mengyun
  • Zhuo, Yue
  • Guo, Hui
  • Xu, Yuncheng
  • Yan, Haijun

Abstract

Variable-rate irrigation (VRI) can effectively improve the irrigation efficiency. In this study, we evaluated the two key indicators, irrigation uniformity and accuracy for a three-span center pivot VRI system with the combination of two sprinkler types, i.e., the Nelson D3000 (a fixed spray plate sprinkler, FSPS) and the R3000 (a rotating spray plate sprinkler, RSPS), two sets of irrigation depths designed for four management zones (zones 1–4) of 10, 8, 15, and 20 mm and 10, 15, 20, and 25 mm, and three cycle times (CTs) of the solenoid valve of 30, 45, and 60 s, with constant-rate irrigation (CRI) as a reference. In addition, the radially affected lengths of irrigation depths in zones 1–4 under various VRI treatments were further determined. The radial (mean CUH = 90.8%) and circumferential application uniformity (mean CUH = 95.6%) as well as radial irrigation accuracy (mean NRMSE = 15.3%) of the R3000 were superior to those of D3000 under VRI. The irrigation uniformity and accuracy of each management zone were less impacted by the designed irrigation depth and CT, but more affected by the location of the management zone. The irrigation uniformity and accuracy of VRI were close to those of CRI, indicating that the VRI system tested could guarantee the same application performance as the CRI system. Changing the D3000 sprinklers to R3000 sprinklers in the VRI system effectively reduced the radially affected lengths of management zones. The radially affected lengths of D3000 under various treatments were primarily distributed from 3–6 m, whereas those of R3000 were 0–3 m. Thus, it was recommended to select RSPSs in the design of the center pivot VRI system, and the transition zone and CT in relation to R3000 sprinklers were suggested to be 0–3 m and 60 s, respectively. This research provides the recommendations for better implementation of VRI.

Suggested Citation

  • Hui, Xin & Lin, Xueji & Zhao, Yue & Xue, Mengyun & Zhuo, Yue & Guo, Hui & Xu, Yuncheng & Yan, Haijun, 2022. "Assessing water distribution characteristics of a variable-rate irrigation system," Agricultural Water Management, Elsevier, vol. 260(C).
  • Handle: RePEc:eee:agiwat:v:260:y:2022:i:c:s0378377421005539
    DOI: 10.1016/j.agwat.2021.107276
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377421005539
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2021.107276?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ouazaa, S. & Latorre, B. & Burguete, J. & Serreta, A. & Playán, E. & Salvador, R. & Paniagua, P. & Zapata, N., 2015. "Effect of the start–stop cycle of center-pivot towers on irrigation performance: Experiments and simulations," Agricultural Water Management, Elsevier, vol. 147(C), pages 163-174.
    2. Kranz, William L. & Eisenhauer, Dean E. & Retka, Mary T., 1992. "Water and energy conservation using irrigation scheduling with center-pivot irrigation systems," Agricultural Water Management, Elsevier, vol. 22(4), pages 325-334, December.
    3. Wang, Yunling & Li, Maona & Hui, Xin & Meng, Yangyang & Yan, Haijun, 2020. "Alfalfa canopy water interception under low-pressure sprinklers," Agricultural Water Management, Elsevier, vol. 230(C).
    4. Ortíz, J.N. & Tarjuelo, J.M. & de Juan, J.A., 2009. "Characterisation of evaporation and drift losses with centre pivots," Agricultural Water Management, Elsevier, vol. 96(11), pages 1541-1546, November.
    5. Silva, Luis Leopoldo, 2007. "Fitting infiltration equations to centre-pivot irrigation data in a Mediterranean soil," Agricultural Water Management, Elsevier, vol. 94(1-3), pages 83-92, December.
    6. Hui, Xin & Zheng, Yudong & Yan, Haijun, 2021. "Water distributions of low-pressure sprinklers as affected by the maize canopy under a centre pivot irrigation system," Agricultural Water Management, Elsevier, vol. 245(C).
    7. Sharma, Vasudha & Irmak, Suat, 2020. "Economic comparisons of variable rate irrigation and fertigation with fixed (uniform) rate irrigation and fertigation and pre-plant fertilizer management for maize in three soils," Agricultural Water Management, Elsevier, vol. 240(C).
    8. Playan, E. & Salvador, R. & Faci, J.M. & Zapata, N. & Martinez-Cob, A. & Sanchez, I., 2005. "Day and night wind drift and evaporation losses in sprinkler solid-sets and moving laterals," Agricultural Water Management, Elsevier, vol. 76(3), pages 139-159, August.
    9. Vories, Earl & Stevens, William (Gene) & Rhine, Matthew & Straatmann, Zachary, 2017. "Investigating irrigation scheduling for rice using variable rate irrigation," Agricultural Water Management, Elsevier, vol. 179(C), pages 314-323.
    10. Barker, J. Burdette & Heeren, Derek M. & Neale, Christopher M.U. & Rudnick, Daran R., 2018. "Evaluation of variable rate irrigation using a remote-sensing-based model," Agricultural Water Management, Elsevier, vol. 203(C), pages 63-74.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hui, Xin & Zhang, Haohui & Zheng, Yudong & Wang, Jingjing & Wang, Yunling & Yan, Haijun, 2024. "Selection of end gun and optimization of water distribution under a center pivot irrigation system," Agricultural Water Management, Elsevier, vol. 298(C).
    2. Hui, Xin & Zhao, He & Zhang, Haohui & Wang, Wentao & Wang, Jingjing & Yan, Haijun, 2023. "Specific power or droplet shear stress: Which is the primary cause of soil erosion under low-pressure sprinklers?," Agricultural Water Management, Elsevier, vol. 286(C).
    3. Li, Maona & Wang, Yunling & Guo, Hui & Ding, Feng & Yan, Haijun, 2023. "Evaluation of variable rate irrigation management in forage crops: Saving water and increasing water productivity," Agricultural Water Management, Elsevier, vol. 275(C).
    4. Wang, Jingjing & Lou, Yu & Wang, Wentao & Liu, Suyi & Zhang, Haohui & Hui, Xin & Wang, Yunling & Yan, Haijun & Maes, Wouter H., 2024. "A robust model for diagnosing water stress of winter wheat by combining UAV multispectral and thermal remote sensing," Agricultural Water Management, Elsevier, vol. 291(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hui, Xin & Zhang, Haohui & Zheng, Yudong & Wang, Jingjing & Wang, Yunling & Yan, Haijun, 2024. "Selection of end gun and optimization of water distribution under a center pivot irrigation system," Agricultural Water Management, Elsevier, vol. 298(C).
    2. Hui, Xin & Zheng, Yudong & Yan, Haijun, 2021. "Water distributions of low-pressure sprinklers as affected by the maize canopy under a centre pivot irrigation system," Agricultural Water Management, Elsevier, vol. 245(C).
    3. Hui, Xin & Zhao, He & Zhang, Haohui & Wang, Wentao & Wang, Jingjing & Yan, Haijun, 2023. "Specific power or droplet shear stress: Which is the primary cause of soil erosion under low-pressure sprinklers?," Agricultural Water Management, Elsevier, vol. 286(C).
    4. Baifus Manke, Emanuele & Nörenberg, Bernardo Gomes & Faria, Lessandro Coll & Tarjuelo, José Maria & Colombo, Alberto & Chagas Neta, Maria Clotilde Carré & Parfitt, José Maria Barbat, 2019. "Wind drift and evaporation losses of a mechanical lateral-move irrigation system: Oscillating plate versus fixed spray plate sprinklers," Agricultural Water Management, Elsevier, vol. 225(C).
    5. Li, Maona & Wang, Yunling & Guo, Hui & Ding, Feng & Yan, Haijun, 2023. "Evaluation of variable rate irrigation management in forage crops: Saving water and increasing water productivity," Agricultural Water Management, Elsevier, vol. 275(C).
    6. Sadeghi, S.-H. & Peters, T. & Shafii, B. & Amini, M.Z. & Stöckle, C., 2017. "Continuous variation of wind drift and evaporation losses under a linear move irrigation system," Agricultural Water Management, Elsevier, vol. 182(C), pages 39-54.
    7. Zhu, Zhongrui & Li, Jiusheng & Zhu, Delan, 2024. "Influence of biotic and abiotic factors and water partitioning on the kinetic energy of sprinkler irrigation on a maize canopy," Agricultural Water Management, Elsevier, vol. 293(C).
    8. Yan Li & Derong Su, 2017. "Alfalfa Water Use and Yield under Different Sprinkler Irrigation Regimes in North Arid Regions of China," Sustainability, MDPI, vol. 9(8), pages 1-15, August.
    9. McCarthy, Alison & Foley, Joseph & Raedts, Pieter & Hills, James, 2023. "Field evaluation of automated site-specific irrigation for cotton and perennial ryegrass using soil-water sensors and Model Predictive Control," Agricultural Water Management, Elsevier, vol. 277(C).
    10. Haijun Liu & Jie Chang & Xiaopei Tang & Jinping Zhang, 2022. "In Situ Measurement of Stemflow, Throughfall and Canopy Interception of Sprinkler Irrigation Water in a Wheat Field," Agriculture, MDPI, vol. 12(8), pages 1-15, August.
    11. Sarwar, Abid & Peters, R. Troy & Mehanna, Hani & Amini, Mohamma Zaman & Mohamed, Abdelmoneim Zakaria, 2019. "Evaluating water application efficiency of low and mid elevation spray application under changing weather conditions," Agricultural Water Management, Elsevier, vol. 221(C), pages 84-91.
    12. Salvador, R. & Latorre, B. & Paniagua, P. & Playán, E., 2011. "Farmers’ scheduling patterns in on-demand pressurized irrigation," Agricultural Water Management, Elsevier, vol. 102(1), pages 86-96.
    13. F. Carrión & J. Montero & J. Tarjuelo & M. Moreno, 2014. "Design of Sprinkler Irrigation Subunit of Minimum Cost with Proper Operation. Application at Corn Crop in Spain," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(14), pages 5073-5089, November.
    14. El-Naggar, A.G. & Hedley, C.B. & Horne, D. & Roudier, P. & Clothier, B.E., 2020. "Soil sensing technology improves application of irrigation water," Agricultural Water Management, Elsevier, vol. 228(C).
    15. Xiaopei Tang & Haijun Liu & Li Yang & Lun Li & Jie Chang, 2022. "Energy Balance, Microclimate, and Crop Evapotranspiration of Winter Wheat ( Triticum aestivum L.) under Sprinkler Irrigation," Agriculture, MDPI, vol. 12(7), pages 1-23, June.
    16. Pardo, J.J. & Martínez-Romero, A. & Léllis, B.C. & Tarjuelo, J.M. & Domínguez, A., 2020. "Effect of the optimized regulated deficit irrigation methodology on water use in barley under semiarid conditions," Agricultural Water Management, Elsevier, vol. 228(C).
    17. Iniesta, F. & Testi, L. & Goldhamer, D.A. & Fereres, E., 2008. "Quantifying reductions in consumptive water use under regulated deficit irrigation in pistachio (Pistacia vera L.)," Agricultural Water Management, Elsevier, vol. 95(7), pages 877-886, July.
    18. Franco-Luesma, Samuel & Álvaro-Fuentes, Jorge & Plaza-Bonilla, Daniel & Arrúe, José Luis & Cantero-Martínez, Carlos & Cavero, José, 2019. "Influence of irrigation time and frequency on greenhouse gas emissions in a solid-set sprinkler-irrigated maize under Mediterranean conditions," Agricultural Water Management, Elsevier, vol. 221(C), pages 303-311.
    19. Jiménez-Aguirre, M.T. & Isidoro, D., 2018. "Hydrosaline Balance in and Nitrogen Loads from an irrigation district before and after modernization," Agricultural Water Management, Elsevier, vol. 208(C), pages 163-175.
    20. Martey, Edward & Etwire, Prince M. & Adombilla, Ramson & Abebrese, Samuel O., 2023. "Information constraint and farmers’ willingness to pay for an irrigation scheduling tool," Agricultural Water Management, Elsevier, vol. 276(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:260:y:2022:i:c:s0378377421005539. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.