IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v203y2018icp63-74.html
   My bibliography  Save this article

Evaluation of variable rate irrigation using a remote-sensing-based model

Author

Listed:
  • Barker, J. Burdette
  • Heeren, Derek M.
  • Neale, Christopher M.U.
  • Rudnick, Daran R.

Abstract

Improvements in soil water balance modeling can be beneficial for optimizing irrigation management to account for spatial variability in soil properties and evapotranspiration (ET). A remote-sensing-based ET and water balance model was tested for irrigation management in an experiment at two University of Nebraska-Lincoln research sites located near Mead and Brule, Nebraska. Both fields included a center pivot equipped with variable rate irrigation (VRI). The study included maize in 2015 and 2016 and soybean in 2016 at Mead, and maize in 2016 at Brule, for a total of 210 plot-years. Four irrigation treatments were applied at Mead, including: VRI based on a remote sensing model (VRI-RS); VRI based on neutron probe soil water content measurement (VRI-NP); uniform irrigation based on neutron probe measurement; and rainfed. Only the VRI-RS and uniform treatments were applied at Brule. Landsat 7 and 8 imagery were used for model input. In 2015, the remote sensing model included reflectance-based crop coefficients for ET estimation in the water balance. In 2016, a hybrid component of the model was activated, which included energy-balance-modeled ET as an input. Both 2015 and 2016 had above-average precipitation at Mead; subsequently, irrigation amounts were relatively low. Seasonal irrigation was greatest for the VRI-RS treatment in all cases because of drift in the water balance model. This was likely caused by excessive soil evaporation estimates. Irrigation application for the VRI-NP at Mead was about 0 mm, 6 mm, and –12 mm less in separate analyses than for the uniform treatment. Irrigation for the VRI-RS was about 40 mm, 50 mm, and –98 mm greater in separate analyses than the uniform at Mead and about 18 mm greater at Brule. For maize at Mead, treatment effects were primarily limited to hydrologic responses (e.g., ET), with differences in yield generally attributed to random error. Rainfed soybean yields were greater than VRI-RS yields, which may have been related to yield loss from lodging, perhaps due to over-irrigation. Regarding the magnitude of spatial variability in the fields, soil available water capacity generally ranked above ET, precipitation, and yield. Future research should include increased cloud-free imagery frequency, incorporation of soil water content measurements into the model, and improved wet soil evaporation and drainage estimates.

Suggested Citation

  • Barker, J. Burdette & Heeren, Derek M. & Neale, Christopher M.U. & Rudnick, Daran R., 2018. "Evaluation of variable rate irrigation using a remote-sensing-based model," Agricultural Water Management, Elsevier, vol. 203(C), pages 63-74.
  • Handle: RePEc:eee:agiwat:v:203:y:2018:i:c:p:63-74
    DOI: 10.1016/j.agwat.2018.02.022
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377418301082
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2018.02.022?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Campos, Isidro & Neale, Christopher M.U. & Suyker, Andrew E. & Arkebauer, Timothy J. & Gonçalves, Ivo Z., 2017. "Reflectance-based crop coefficients REDUX: For operational evapotranspiration estimates in the age of high producing hybrid varieties," Agricultural Water Management, Elsevier, vol. 187(C), pages 140-153.
    2. Barker, J. Burdette & Franz, Trenton E. & Heeren, Derek M. & Neale, Christopher M.U. & Luck, Joe D., 2017. "Soil water content monitoring for irrigation management: A geostatistical analysis," Agricultural Water Management, Elsevier, vol. 188(C), pages 36-49.
    3. Odhiambo, L.O. & Irmak, S., 2012. "Evaluation of the impact of surface residue cover on single and dual crop coefficient for estimating soybean actual evapotranspiration," Agricultural Water Management, Elsevier, vol. 104(C), pages 221-234.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bhatti, Sandeep & Heeren, Derek M. & Barker, J. Burdette & Neale, Christopher M.U. & Woldt, Wayne E. & Maguire, Mitchell S. & Rudnick, Daran R., 2020. "Site-specific irrigation management in a sub-humid climate using a spatial evapotranspiration model with satellite and airborne imagery," Agricultural Water Management, Elsevier, vol. 230(C).
    2. Said A. Hamido & Kelly T. Morgan, 2021. "The Effect of Irrigation Rate on the Water Relations of Young Citrus Trees in High-Density Planting," Sustainability, MDPI, vol. 13(4), pages 1-18, February.
    3. McCarthy, Alison & Foley, Joseph & Raedts, Pieter & Hills, James, 2023. "Field evaluation of automated site-specific irrigation for cotton and perennial ryegrass using soil-water sensors and Model Predictive Control," Agricultural Water Management, Elsevier, vol. 277(C).
    4. Hui, Xin & Lin, Xueji & Zhao, Yue & Xue, Mengyun & Zhuo, Yue & Guo, Hui & Xu, Yuncheng & Yan, Haijun, 2022. "Assessing water distribution characteristics of a variable-rate irrigation system," Agricultural Water Management, Elsevier, vol. 260(C).
    5. Amazirh, Abdelhakim & Er-Raki, Salah & Ojha, Nitu & Bouras, El houssaine & Rivalland, Vincent & Merlin, Olivier & Chehbouni, Abdelghani, 2022. "Assimilation of SMAP disaggregated soil moisture and Landsat land surface temperature to improve FAO-56 estimates of ET in semi-arid regions," Agricultural Water Management, Elsevier, vol. 260(C).
    6. Lo, Tsz Him & Rudnick, Daran R. & Singh, Jasreman & Nakabuye, Hope Njuki & Katimbo, Abia & Heeren, Derek M. & Ge, Yufeng, 2020. "Field assessment of interreplicate variability from eight electromagnetic soil moisture sensors," Agricultural Water Management, Elsevier, vol. 231(C).
    7. Li, Maona & Wang, Yunling & Guo, Hui & Ding, Feng & Yan, Haijun, 2023. "Evaluation of variable rate irrigation management in forage crops: Saving water and increasing water productivity," Agricultural Water Management, Elsevier, vol. 275(C).
    8. El-Naggar, A.G. & Hedley, C.B. & Horne, D. & Roudier, P. & Clothier, B.E., 2020. "Soil sensing technology improves application of irrigation water," Agricultural Water Management, Elsevier, vol. 228(C).
    9. Singh, Jasreman & Ge, Yufeng & Heeren, Derek M. & Walter-Shea, Elizabeth & Neale, Christopher M.U. & Irmak, Suat & Woldt, Wayne E. & Bai, Geng & Bhatti, Sandeep & Maguire, Mitchell S., 2021. "Inter-relationships between water depletion and temperature differential in row crop canopies in a sub-humid climate," Agricultural Water Management, Elsevier, vol. 256(C).
    10. Bhatti, Sandeep & Heeren, Derek M. & Evett, Steven R. & O’Shaughnessy, Susan A. & Rudnick, Daran R. & Franz, Trenton E. & Ge, Yufeng & Neale, Christopher M.U., 2022. "Crop response to thermal stress without yield loss in irrigated maize and soybean in Nebraska," Agricultural Water Management, Elsevier, vol. 274(C).
    11. Pôças, I. & Calera, A. & Campos, I. & Cunha, M., 2020. "Remote sensing for estimating and mapping single and basal crop coefficientes: A review on spectral vegetation indices approaches," Agricultural Water Management, Elsevier, vol. 233(C).
    12. O’Shaughnessy, Susan A. & Kim, Minyoung & Andrade, Manuel A. & Colaizzi, Paul D. & Evett, Steven R., 2020. "Site-specific irrigation of grain sorghum using plant and soil water sensing feedback - Texas High Plains," Agricultural Water Management, Elsevier, vol. 240(C).
    13. Maguire, Mitchell S. & Neale, Christopher M.U. & Woldt, Wayne E. & Heeren, Derek M., 2022. "Managing spatial irrigation using remote-sensing-based evapotranspiration and soil water adaptive control model," Agricultural Water Management, Elsevier, vol. 272(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gonçalves, Ivo Zution & Mekonnen, Mesfin M. & Neale, Christopher M.U. & Campos, Isidro & Neale, Michael R., 2020. "Temporal and spatial variations of irrigation water use for commercial corn fields in Central Nebraska," Agricultural Water Management, Elsevier, vol. 228(C).
    2. Bispo, R.C. & Hernandez, F.B.T. & Gonçalves, I.Z. & Neale, C.M.U. & Teixeira, A.H.C., 2022. "Remote sensing based evapotranspiration modeling for sugarcane in Brazil using a hybrid approach," Agricultural Water Management, Elsevier, vol. 271(C).
    3. Jovanovic, N. & Pereira, L.S. & Paredes, P. & Pôças, I. & Cantore, V. & Todorovic, M., 2020. "A review of strategies, methods and technologies to reduce non-beneficial consumptive water use on farms considering the FAO56 methods," Agricultural Water Management, Elsevier, vol. 239(C).
    4. Wei, Zheng & Paredes, Paula & Liu, Yu & Chi, Wei Wei & Pereira, Luis S., 2015. "Modelling transpiration, soil evaporation and yield prediction of soybean in North China Plain," Agricultural Water Management, Elsevier, vol. 147(C), pages 43-53.
    5. Pereira, L.S. & Paredes, P. & Hunsaker, D.J. & López-Urrea, R. & Mohammadi Shad, Z., 2021. "Standard single and basal crop coefficients for field crops. Updates and advances to the FAO56 crop water requirements method," Agricultural Water Management, Elsevier, vol. 243(C).
    6. Mahmoud, Shereif H. & Gan, Thian Yew, 2019. "Irrigation water management in arid regions of Middle East: Assessing spatio-temporal variation of actual evapotranspiration through remote sensing techniques and meteorological data," Agricultural Water Management, Elsevier, vol. 212(C), pages 35-47.
    7. Shao, Guomin & Han, Wenting & Zhang, Huihui & Zhang, Liyuan & Wang, Yi & Zhang, Yu, 2023. "Prediction of maize crop coefficient from UAV multisensor remote sensing using machine learning methods," Agricultural Water Management, Elsevier, vol. 276(C).
    8. Ouaadi, Nadia & Jarlan, Lionel & Khabba, Saïd & Le Page, Michel & Chakir, Adnane & Er-Raki, Salah & Frison, Pierre-Louis, 2023. "Are the C-band backscattering coefficient and interferometric coherence suitable substitutes of NDVI for the monitoring of the FAO-56 crop coefficient?," Agricultural Water Management, Elsevier, vol. 282(C).
    9. Hodges, Blade & Tagert, Mary Love & Paz, Joel O. & Meng, Qingmin, 2023. "Assessing in-field soil moisture variability in the active root zone using granular matrix sensors," Agricultural Water Management, Elsevier, vol. 282(C).
    10. Anderson, Ray G. & Alfieri, Joseph G. & Tirado-Corbalá, Rebecca & Gartung, Jim & McKee, Lynn G. & Prueger, John H. & Wang, Dong & Ayars, James E. & Kustas, William P., 2017. "Assessing FAO-56 dual crop coefficients using eddy covariance flux partitioning," Agricultural Water Management, Elsevier, vol. 179(C), pages 92-102.
    11. Bhatti, Sandeep & Heeren, Derek M. & Evett, Steven R. & O’Shaughnessy, Susan A. & Rudnick, Daran R. & Franz, Trenton E. & Ge, Yufeng & Neale, Christopher M.U., 2022. "Crop response to thermal stress without yield loss in irrigated maize and soybean in Nebraska," Agricultural Water Management, Elsevier, vol. 274(C).
    12. Kelechi Igwe & Vaishali Sharda & Trevor Hefley, 2023. "Evaluating the Impact of Future Seasonal Climate Extremes on Crop Evapotranspiration of Maize in Western Kansas Using a Machine Learning Approach," Land, MDPI, vol. 12(8), pages 1-26, July.
    13. Pôças, I. & Calera, A. & Campos, I. & Cunha, M., 2020. "Remote sensing for estimating and mapping single and basal crop coefficientes: A review on spectral vegetation indices approaches," Agricultural Water Management, Elsevier, vol. 233(C).
    14. Campos, Isidro & Neale, Christopher M.U. & Suyker, Andrew E. & Arkebauer, Timothy J. & Gonçalves, Ivo Z., 2017. "Reflectance-based crop coefficients REDUX: For operational evapotranspiration estimates in the age of high producing hybrid varieties," Agricultural Water Management, Elsevier, vol. 187(C), pages 140-153.
    15. Zhang, Yu & Han, Wenting & Zhang, Huihui & Niu, Xiaotao & Shao, Guomin, 2023. "Evaluating maize evapotranspiration using high-resolution UAV-based imagery and FAO-56 dual crop coefficient approach," Agricultural Water Management, Elsevier, vol. 275(C).
    16. Bhatti, Sandeep & Heeren, Derek M. & Barker, J. Burdette & Neale, Christopher M.U. & Woldt, Wayne E. & Maguire, Mitchell S. & Rudnick, Daran R., 2020. "Site-specific irrigation management in a sub-humid climate using a spatial evapotranspiration model with satellite and airborne imagery," Agricultural Water Management, Elsevier, vol. 230(C).
    17. Campoy, Jaime & Campos, Isidro & Plaza, Carmen & Calera, María & Jiménez, Nuria & Bodas, Vicente & Calera, Alfonso, 2019. "Water use efficiency and light use efficiency in garlic using a remote sensing-based approach," Agricultural Water Management, Elsevier, vol. 219(C), pages 40-48.
    18. Gonçalves, I.Z. & Ruhoff, A. & Laipelt, L. & Bispo, R.C. & Hernandez, F.B.T. & Neale, C.M.U. & Teixeira, A.H.C. & Marin, F.R., 2022. "Remote sensing-based evapotranspiration modeling using geeSEBAL for sugarcane irrigation management in Brazil," Agricultural Water Management, Elsevier, vol. 274(C).
    19. Jiao, Maqian & Yang, Wenhan & Hu, Wei & Clothier, Brent & Zou, Songyan & Li, Doudou & Di, Nan & Liu, Jinqiang & Liu, Yang & Duan, Jie & Xi, Benye, 2021. "The optimal tensiometer installation position for scheduling border irrigation in Populus tomentosa plantations," Agricultural Water Management, Elsevier, vol. 253(C).
    20. Maguire, Mitchell S. & Neale, Christopher M.U. & Woldt, Wayne E. & Heeren, Derek M., 2022. "Managing spatial irrigation using remote-sensing-based evapotranspiration and soil water adaptive control model," Agricultural Water Management, Elsevier, vol. 272(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:203:y:2018:i:c:p:63-74. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.