IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v179y2017icp314-323.html
   My bibliography  Save this article

Investigating irrigation scheduling for rice using variable rate irrigation

Author

Listed:
  • Vories, Earl
  • Stevens, William (Gene)
  • Rhine, Matthew
  • Straatmann, Zachary

Abstract

Because almost all US rice is produced with continuous flood irrigation, little information addresses irrigation scheduling for rice; however, successful production without a continuous flood will require timely irrigation. A field study conducted at the University of Missouri Fisher Delta Research Center Marsh Farm during the 2013 and 2014 growing seasons investigated irrigation scheduling for sprinkler irrigated rice. Two irrigation timings were based on management allowed depletion (MAD) (MAD1: 10mm application at a 12mm estimated soil water deficit (SWD); MAD2: 15mm application at a 19mm estimated SWD). For each MAD treatment, three VRI settings represented 75, 100, and 125% of the target applications. Seven fewer irrigations were applied to MAD2 plots in 2013 and eleven fewer in 2014 but larger applications resulted in similar total application amounts. Neither treatment main effect was significant for yield in 2013, but there was a significant interaction, with differences among the % application treatments for MAD2. The % application main effect was significant for irrigation water use efficiency and there was a significant interaction. Yields were lower in 2014 than in 2013, which was expected given the late planting and soil compaction that resulted from land grading. Soil moisture data were inconsistent, and variability among the sensors led to few significant differences. Yield was significantly greater than the field average for only one treatment combination (MAD1 – 100%) and significantly lower for two (MAD2 – 75, 100%). Irrigation water use efficiency of two of the treatment combinations was significantly greater than the field average (MAD1 – 75%, MAD2 – 75%) while two were significantly lower (MAD1 – 125%, MAD2 – 125%). While the findings suggest that sprinkler irrigated rice performed equally well under a range of irrigation management, additional research is needed to validate these trends and develop improved guidelines for producers.

Suggested Citation

  • Vories, Earl & Stevens, William (Gene) & Rhine, Matthew & Straatmann, Zachary, 2017. "Investigating irrigation scheduling for rice using variable rate irrigation," Agricultural Water Management, Elsevier, vol. 179(C), pages 314-323.
  • Handle: RePEc:eee:agiwat:v:179:y:2017:i:c:p:314-323
    DOI: 10.1016/j.agwat.2016.05.032
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377416302001
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2016.05.032?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Martey, Edward & Etwire, Prince M. & Adombilla, Ramson & Abebrese, Samuel O., 2023. "Information constraint and farmers’ willingness to pay for an irrigation scheduling tool," Agricultural Water Management, Elsevier, vol. 276(C).
    2. Hui, Xin & Lin, Xueji & Zhao, Yue & Xue, Mengyun & Zhuo, Yue & Guo, Hui & Xu, Yuncheng & Yan, Haijun, 2022. "Assessing water distribution characteristics of a variable-rate irrigation system," Agricultural Water Management, Elsevier, vol. 260(C).
    3. Li, Maona & Wang, Yunling & Guo, Hui & Ding, Feng & Yan, Haijun, 2023. "Evaluation of variable rate irrigation management in forage crops: Saving water and increasing water productivity," Agricultural Water Management, Elsevier, vol. 275(C).
    4. Baogui Li & Gary W. Marek & Thomas H. Marek & Dana O. Porter & Srinivasulu Ale & Jerry E. Moorhead & David K. Brauer & Raghavan Srinivasan & Yong Chen, 2023. "Impacts of Ongoing Land-Use Change on Watershed Hydrology and Crop Production Using an Improved SWAT Model," Land, MDPI, vol. 12(3), pages 1-17, March.
    5. Antonio López-Piñeiro & Luis Vicente & Damián Fernández-Rodríguez & Ángel Albarrán & José Manuel Rato Nunes & David Peña, 2024. "Effects of Sustainable Rice Management on the Behavior and Bioefficacy of Bispyribac-Sodium: A Medium-Term Study," Sustainability, MDPI, vol. 16(10), pages 1-17, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:179:y:2017:i:c:p:314-323. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.