IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v95y2008i7p877-886.html
   My bibliography  Save this article

Quantifying reductions in consumptive water use under regulated deficit irrigation in pistachio (Pistacia vera L.)

Author

Listed:
  • Iniesta, F.
  • Testi, L.
  • Goldhamer, D.A.
  • Fereres, E.

Abstract

The reduction in agricultural water use in areas of scarce supplies can release significant amounts of water for other uses. As improvements in irrigation systems and management have been widely adopted by fruit tree growers already, there is a need to explore the potential for reducing irrigation requirements via deficit irrigation (DI). It is also important to quantify to what extent the reduction in applied water through DI is translated into net water savings via tree evapotranspiration (ET) reduction. An experiment was conducted in a commercial pistachio orchard in Madera, CA, where a regulated deficit irrigation (RDI) program was applied to a 32.3-ha block, while another block of the same size was fully irrigated (FI). Four trees were instrumented with six neutron probe access tubes each, in the two treatments and the soil water balance method was used to determine tree ET. Seasonal irrigation water in FI, applied through a full-coverage microsprinkler system, amounted to 842 mm, while only 669 mm were applied in RDI. Seasonal ET in FI was 1024 mm, of which 308 mm were computed as evaporation from soil (Es). In RDI, seasonal ET was reduced to 784 mm with 288 mm as Es. The reduction in applied water during the deficit period amounted to 147 mm. The ET of RDI during the deficit period was also reduced relative to that of FI by 133 mm, which represented 33% of the ET of FI during the deficit irrigation period. There was an additional ET reduction in RDI of about 100 mm that occurred in the post-deficit period.

Suggested Citation

  • Iniesta, F. & Testi, L. & Goldhamer, D.A. & Fereres, E., 2008. "Quantifying reductions in consumptive water use under regulated deficit irrigation in pistachio (Pistacia vera L.)," Agricultural Water Management, Elsevier, vol. 95(7), pages 877-886, July.
  • Handle: RePEc:eee:agiwat:v:95:y:2008:i:7:p:877-886
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378-3774(08)00030-9
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yazar, Attila, 1984. "Evaporation and drift losses from sprinkler irrigation systems under various operating conditions," Agricultural Water Management, Elsevier, vol. 8(4), pages 439-449, February.
    2. Playan, E. & Salvador, R. & Faci, J.M. & Zapata, N. & Martinez-Cob, A. & Sanchez, I., 2005. "Day and night wind drift and evaporation losses in sprinkler solid-sets and moving laterals," Agricultural Water Management, Elsevier, vol. 76(3), pages 139-159, August.
    3. Tarjuelo, J. M. & Ortega, J. F. & Montero, J. & de Juan, J. A., 2000. "Modelling evaporation and drift losses in irrigation with medium size impact sprinklers under semi-arid conditions," Agricultural Water Management, Elsevier, vol. 43(3), pages 263-284, April.
    4. Koumanov, K. S. & Hopmans, J. W. & Schwankl, L. J. & Andreu, L. & Tuli, A., 1997. "Application efficiency of micro-sprinkler irrigation of almond trees," Agricultural Water Management, Elsevier, vol. 34(3), pages 247-263, October.
    5. Andreu, L. & Hopmans, J. W. & Schwankl, L. J., 1997. "Spatial and temporal distribution of soil water balance for a drip-irrigated almond tree," Agricultural Water Management, Elsevier, vol. 35(1-2), pages 123-146, December.
    6. Garnier, E. & Berger, A. & Rambal, S., 1986. "Water balance and pattern of soil water uptake in a peach orchard," Agricultural Water Management, Elsevier, vol. 11(2), pages 145-158, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Giulia Marino & Daniele Zaccaria & Richard L. Snyder & Octavio Lagos & Bruce D. Lampinen & Louise Ferguson & Stephen R. Grattan & Cayle Little & Kristen Shapiro & Mahesh Lal Maskey & Dennis L. Corwin , 2019. "Actual Evapotranspiration and Tree Performance of Mature Micro-Irrigated Pistachio Orchards Grown on Saline-Sodic Soils in the San Joaquin Valley of California," Agriculture, MDPI, vol. 9(4), pages 1-21, April.
    2. Samperio, Alberto & Moñino, María José & Marsal, Jordi & Prieto, María Henar & Stöckle, Claudio, 2014. "Use of CropSyst as a tool to predict water use and crop coefficient in Japanese plum trees," Agricultural Water Management, Elsevier, vol. 146(C), pages 57-68.
    3. Cui, Ningbo & Du, Taisheng & Li, Fusheng & Tong, Ling & Kang, Shaozhong & Wang, Mixia & Liu, Xiaozhi & Li, Zhijun, 2009. "Response of vegetative growth and fruit development to regulated deficit irrigation at different growth stages of pear-jujube tree," Agricultural Water Management, Elsevier, vol. 96(8), pages 1237-1246, August.
    4. Bhantana, Parashuram & Lazarovitch, Naftali, 2010. "Evapotranspiration, crop coefficient and growth of two young pomegranate (Punica granatum L.) varieties under salt stress," Agricultural Water Management, Elsevier, vol. 97(5), pages 715-722, May.
    5. Mohammadi Mohammadabadi, Akbar & Hosseinifard, Seyed Javad & Sedaghati, Nasser & Nikooei Dastjerdi, Mohammadreza, 2020. "Pistachio (Pistachia vera L.) seedling growth response to irrigation method and volume in Iran," Agricultural Water Management, Elsevier, vol. 240(C).
    6. Pourmohammadali, Behrooz & Hosseinifard, Seyed Javad & Hassan Salehi, Mohammad & Shirani, Hossein & Esfandiarpour Boroujeni, Isa, 2019. "Effects of soil properties, water quality and management practices on pistachio yield in Rafsanjan region, southeast of Iran," Agricultural Water Management, Elsevier, vol. 213(C), pages 894-902.
    7. Memmi, H. & Gijón, M.C. & Couceiro, J.F. & Pérez-López, D., 2016. "Water stress thresholds for regulated deficit irrigation in pistachio trees: Rootstock influence and effects on yield quality," Agricultural Water Management, Elsevier, vol. 164(P1), pages 58-72.
    8. Geerts, Sam & Raes, Dirk, 2009. "Deficit irrigation as an on-farm strategy to maximize crop water productivity in dry areas," Agricultural Water Management, Elsevier, vol. 96(9), pages 1275-1284, September.
    9. López-López, Manuel & Espadafor, Mónica & Testi, Luca & Lorite, Ignacio Jesús & Orgaz, Francisco & Fereres, Elías, 2018. "Water use of irrigated almond trees when subjected to water deficits," Agricultural Water Management, Elsevier, vol. 195(C), pages 84-93.
    10. Nouri, Milad & Homaee, Mehdi & Pereira, Luis S. & Bybordi, Mohammad, 2023. "Water management dilemma in the agricultural sector of Iran: A review focusing on water governance," Agricultural Water Management, Elsevier, vol. 288(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Baifus Manke, Emanuele & Nörenberg, Bernardo Gomes & Faria, Lessandro Coll & Tarjuelo, José Maria & Colombo, Alberto & Chagas Neta, Maria Clotilde Carré & Parfitt, José Maria Barbat, 2019. "Wind drift and evaporation losses of a mechanical lateral-move irrigation system: Oscillating plate versus fixed spray plate sprinklers," Agricultural Water Management, Elsevier, vol. 225(C).
    2. Sanchez, I. & Zapata, N. & Faci, J.M., 2010. "Combined effect of technical, meteorological and agronomical factors on solid-set sprinkler irrigation: II. Modifications of the wind velocity and of the water interception plane by the crop canopy," Agricultural Water Management, Elsevier, vol. 97(10), pages 1591-1601, October.
    3. Sadeghi, S.-H. & Peters, T. & Shafii, B. & Amini, M.Z. & Stöckle, C., 2017. "Continuous variation of wind drift and evaporation losses under a linear move irrigation system," Agricultural Water Management, Elsevier, vol. 182(C), pages 39-54.
    4. Robles, O. & Latorre, B. & Zapata, N. & Burguete, J., 2019. "Self-calibrated ballistic model for sprinkler irrigation with a field experiments data base," Agricultural Water Management, Elsevier, vol. 223(C), pages 1-1.
    5. Sanchez, I. & Faci, J.M. & Zapata, N., 2011. "The effects of pressure, nozzle diameter and meteorological conditions on the performance of agricultural impact sprinklers," Agricultural Water Management, Elsevier, vol. 102(1), pages 13-24.
    6. Uddin, J. & Smith, R.J. & Hancock, N.H. & Foley, J.P., 2013. "Evaporation and sapflow dynamics during sprinkler irrigation of cotton," Agricultural Water Management, Elsevier, vol. 125(C), pages 35-45.
    7. Sheikhesmaeili, Omid & Montero, Jesús & Laserna, Santiago, 2016. "Analysis of water application with semi-portable big size sprinkler irrigation systems in semi-arid areas," Agricultural Water Management, Elsevier, vol. 163(C), pages 275-284.
    8. Sarwar, Abid & Peters, R. Troy & Mehanna, Hani & Amini, Mohamma Zaman & Mohamed, Abdelmoneim Zakaria, 2019. "Evaluating water application efficiency of low and mid elevation spray application under changing weather conditions," Agricultural Water Management, Elsevier, vol. 221(C), pages 84-91.
    9. Zapata, N. & Playan, E. & Martinez-Cob, A. & Sanchez, I. & Faci, J.M. & Lecina, S., 2007. "From on-farm solid-set sprinkler irrigation design to collective irrigation network design in windy areas," Agricultural Water Management, Elsevier, vol. 87(2), pages 187-199, January.
    10. López-López, Manuel & Espadafor, Mónica & Testi, Luca & Lorite, Ignacio Jesús & Orgaz, Francisco & Fereres, Elías, 2018. "Water use of irrigated almond trees when subjected to water deficits," Agricultural Water Management, Elsevier, vol. 195(C), pages 84-93.
    11. Vanella, Daniela & Peddinti, Srinivasa Rao & Kisekka, Isaya, 2022. "Unravelling soil water dynamics in almond orchards characterized by soil-heterogeneity using electrical resistivity tomography," Agricultural Water Management, Elsevier, vol. 269(C).
    12. Xiang, Qingjiang & Qureshi, Waqar Ahmed & Tunio, Mazhar Hussain & Solangi, Kashif Ali & Xu, Zhengdian & Lakhiar, Imran Ali, 2021. "low-pressure drop size distribution characterization of impact sprinkler jet nozzles with and without aeration," Agricultural Water Management, Elsevier, vol. 243(C).
    13. Koumanov, K. S. & Hopmans, J. W. & Schwankl, L. J. & Andreu, L. & Tuli, A., 1997. "Application efficiency of micro-sprinkler irrigation of almond trees," Agricultural Water Management, Elsevier, vol. 34(3), pages 247-263, October.
    14. Playan, E. & Salvador, R. & Faci, J.M. & Zapata, N. & Martinez-Cob, A. & Sanchez, I., 2005. "Day and night wind drift and evaporation losses in sprinkler solid-sets and moving laterals," Agricultural Water Management, Elsevier, vol. 76(3), pages 139-159, August.
    15. Al-Ghobari, Hussein M. & El-Marazky, Mohamed S. & Dewidar, Ahmed Z. & Mattar, Mohamed A., 2018. "Prediction of wind drift and evaporation losses from sprinkler irrigation using neural network and multiple regression techniques," Agricultural Water Management, Elsevier, vol. 195(C), pages 211-221.
    16. Sarwar, Abid & Peters, R. Troy & Shafeeque, Muhammad & Mohamed, Abdelmoneim & Arshad, Arfan & Ullah, Ikram & Saddique, Naeem & Muzammil, Muhammad & Aslam, Rana Ammar, 2021. "Accurate measurement of wind drift and evaporation losses could improve water application efficiency of sprinkler irrigation systems − A comparison of measuring techniques," Agricultural Water Management, Elsevier, vol. 258(C).
    17. F. Carrión & J. Montero & J. Tarjuelo & M. Moreno, 2014. "Design of Sprinkler Irrigation Subunit of Minimum Cost with Proper Operation. Application at Corn Crop in Spain," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(14), pages 5073-5089, November.
    18. Qu, Zhaoming & Chen, Qi & Feng, Haojie & Hao, Miao & Niu, Guoliang & Liu, Yanli & Li, Chengliang, 2022. "Interactive effect of irrigation and blend ratio of controlled release potassium chloride and potassium chloride on greenhouse tomato production in the Yellow River Basin of China," Agricultural Water Management, Elsevier, vol. 261(C).
    19. Hui, Xin & Zheng, Yudong & Yan, Haijun, 2021. "Water distributions of low-pressure sprinklers as affected by the maize canopy under a centre pivot irrigation system," Agricultural Water Management, Elsevier, vol. 245(C).
    20. Pardo, J.J. & Martínez-Romero, A. & Léllis, B.C. & Tarjuelo, J.M. & Domínguez, A., 2020. "Effect of the optimized regulated deficit irrigation methodology on water use in barley under semiarid conditions," Agricultural Water Management, Elsevier, vol. 228(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:95:y:2008:i:7:p:877-886. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.