IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v223y2019ic70.html
   My bibliography  Save this article

Copula-based agricultural drought risk of rainfed cropping systems

Author

Listed:
  • Ribeiro, Andreia F.S.
  • Russo, Ana
  • Gouveia, Célia M.
  • Páscoa, Patrícia

Abstract

In a future climate, warmer and drier conditions are expected, and the associated negative impacts in agricultural productions are a major issue. Assessing the risk of drought hazard on agricultural systems is, therefore, of main importance in decision-making, with the aim of mitigating drought-related crop losses. In this study the agricultural drought risk is defined as the conditional probability of occurring crop-losses under drought conditions. We use the copula theory to estimate joint probability distributions describing the amount of dependence between drought conditions and crop yield anomalies of two major rainfed cereals in the Iberian Peninsula (wheat and barley), in the period 1986–2016. Further conditional probability distributions of the crop yield anomalies under different drought levels are obtained using the Standardized Precipitation Evapotranspiration Index (SPEI) and the satellite derived indices Vegetation Condition Index (VCI) and Temperature Condition Index (TCI). The results suggest that, in general, the joint behaviour of yield anomalies and drought conditions exhibits a dependence between the extreme values, whereas barley exhibits greater probabilities of joint extreme low values of yield and drought indicators. Moreover, while TCI is mainly used in copula models indicating greater probabilities of joint extreme high values of wheat and drought indicators (gumbel models), VCI and SPEI are mainly associated to copula models indicating greater probabilities of joint extreme low values (clayton models). The estimated conditional probabilities of occurrence of crop-loss are illustrated at the province level and suggest that agricultural drought risk increases with drought severity in most of the provinces.

Suggested Citation

  • Ribeiro, Andreia F.S. & Russo, Ana & Gouveia, Célia M. & Páscoa, Patrícia, 2019. "Copula-based agricultural drought risk of rainfed cropping systems," Agricultural Water Management, Elsevier, vol. 223(C), pages 1-1.
  • Handle: RePEc:eee:agiwat:v:223:y:2019:i:c:70
    DOI: 10.1016/j.agwat.2019.105689
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377419302483
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2019.105689?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ying Li & Wei Gu & Weijia Cui & Zhiyun Chang & Yingjun Xu, 2015. "Exploration of copula function use in crop meteorological drought risk analysis: a case study of winter wheat in Beijing, China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 77(2), pages 1289-1303, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yang Li & Fan Wang & Ye Shen & Yichen Qin & Jiesheng Si, 2022. "Selection of mixed copula for association modeling with tied observations," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 31(5), pages 1127-1180, December.
    2. Li, Pei & Huang, Qiang & Huang, Shengzhi & Leng, Guoyong & Peng, Jian & Wang, Hao & Zheng, Xudong & Li, Yifei & Fang, Wei, 2022. "Various maize yield losses and their dynamics triggered by drought thresholds based on Copula-Bayesian conditional probabilities," Agricultural Water Management, Elsevier, vol. 261(C).
    3. Mohamad Khoirun Najib & Sri Nurdiati & Ardhasena Sopaheluwakan, 2022. "Multivariate fire risk models using copula regression in Kalimantan, Indonesia," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 113(2), pages 1263-1283, September.
    4. Zhang, Yitong & Hao, Zengchao & Zhang, Yu, 2023. "Agricultural risk assessment of compound dry and hot events in China," Agricultural Water Management, Elsevier, vol. 277(C).
    5. Zhang, Tianyuan & Tan, Qian & Wang, Shuping & Zhang, Tong & Hu, Kejia & Zhang, Shan, 2022. "Assessment and management of composite risk in irrigated agriculture under water-food-energy nexus and uncertainty," Agricultural Water Management, Elsevier, vol. 262(C).
    6. Liu, Yu & Li, Shilei & Liu, Yanxin & Shen, Hongzheng & Huang, Tingting & Ma, Xiaoyi, 2023. "Optimization of a nitrogen fertilizer application scheme for spring maize in full-film double-ridge furrow in Longzhong, China," Agricultural Water Management, Elsevier, vol. 290(C).
    7. Sosheel S. Godfrey & Thomas Nordblom & Ryan H. L. Ip & Susan Robertson & Timothy Hutchings & Karl Behrendt, 2021. "Drought Shocks and Gearing Impacts on the Profitability of Sheep Farming," Agriculture, MDPI, vol. 11(4), pages 1-19, April.
    8. Elaheh Motevali Bashi Naeini & Ali Mohammad Akhoond-Ali & Fereydoun Radmanesh & Jahangir Abedi Koupai & Shahrokh Soltaninia, 2021. "Comparison of the Calculated Drought Return Periods Using Tri-variate and Bivariate Copula Functions Under Climate Change Condition," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(14), pages 4855-4875, November.
    9. Zhang, Shuo & Kang, Yan & Gao, Xuan & Chen, Peiru & Cheng, Xiao & Song, Songbai & Li, Lingjie, 2023. "Optimal reservoir operation and risk analysis of agriculture water supply considering encounter uncertainty of precipitation in irrigation area and runoff from upstream," Agricultural Water Management, Elsevier, vol. 277(C).
    10. Ihsan F. Hasan & Rozi Abdullah, 2022. "Agricultural Drought Characteristics Analysis Using Copula," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(15), pages 5915-5930, December.
    11. Karen A. McKinnon & Andrew Poppick, 2020. "Estimating Changes in the Observed Relationship Between Humidity and Temperature Using Noncrossing Quantile Smoothing Splines," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 25(3), pages 292-314, September.
    12. Zhang, Yu & Hao, Zengchao & Feng, Sifang & Zhang, Xuan & Xu, Yang & Hao, Fanghua, 2021. "Agricultural drought prediction in China based on drought propagation and large-scale drivers," Agricultural Water Management, Elsevier, vol. 255(C).
    13. Mubenga-Tshitaka, Jean-Luc & Muteba Mwamba, John W. & Dikgang, Johane & Gelo, Dambala, 2021. "Risk spillover between climate variables and the agricultural commodity market in East Africa," EconStor Preprints 243160, ZBW - Leibniz Information Centre for Economics.
    14. Zhang, Fan & Cui, Ningbo & Guo, Shanshan & Yue, Qiong & Jiang, Shouzheng & Zhu, Bin & Yu, Xiuyun, 2023. "Irrigation strategy optimization in irrigation districts with seasonal agricultural drought in southwest China: A copula-based stochastic multiobjective approach," Agricultural Water Management, Elsevier, vol. 282(C).
    15. Khaledi-Alamdari, Mohammad & Majnooni-Heris, Abolfazl & Fakheri-Fard, Ahmad & Russo, Ana, 2023. "Probabilistic climate risk assessment in rainfed wheat yield: Copula approach using water requirement satisfaction index," Agricultural Water Management, Elsevier, vol. 289(C).
    16. Zhang, Yu & Hao, Zengchao & Feng, Sifang & Zhang, Xuan & Hao, Fanghua, 2022. "Changes and driving factors of compound agricultural droughts and hot events in eastern China," Agricultural Water Management, Elsevier, vol. 263(C).
    17. Jun Yin & Zhe Yuan & Ting Li, 2021. "The Spatial-Temporal Variation Characteristics of Natural Vegetation Drought in the Yangtze River Source Region, China," IJERPH, MDPI, vol. 18(4), pages 1-24, February.
    18. Dongxing Zhang & Dang Luo, 2022. "Assessment of agricultural drought loss using a skewed grey cloud ordered clustering model," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 114(3), pages 2787-2810, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Pei & Huang, Qiang & Huang, Shengzhi & Leng, Guoyong & Peng, Jian & Wang, Hao & Zheng, Xudong & Li, Yifei & Fang, Wei, 2022. "Various maize yield losses and their dynamics triggered by drought thresholds based on Copula-Bayesian conditional probabilities," Agricultural Water Management, Elsevier, vol. 261(C).
    2. Fatih Tosunoglu & Ibrahim Can, 2016. "Application of copulas for regional bivariate frequency analysis of meteorological droughts in Turkey," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 82(3), pages 1457-1477, July.
    3. Liping Wang & Xingnan Zhang & Shufang Wang & Mohamed Khaled Salahou & Yuanhao Fang, 2020. "Analysis and Application of Drought Characteristics Based on Theory of Runs and Copulas in Yunnan, Southwest China," IJERPH, MDPI, vol. 17(13), pages 1-17, June.
    4. Qian Li & Liutong Chen & Zhengtao Yan & Yingjun Xu, 2022. "Exploration of Copula Models Use in Risk Assessment for Freezing and Snow Events: A Case Study in Southern China," Sustainability, MDPI, vol. 14(5), pages 1-12, February.
    5. Raissa Zurli Bittencourt Bravo & Ana Paula Martins do Amaral Cunha & Adriana Leiras & Fernando Luiz Cyrino Oliveira, 2021. "A new approach for a drought composite index," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 108(1), pages 755-773, August.
    6. Chen An & Ming Dou & Jianling Zhang & Guiqiu Li, 2021. "Method for Analyzing Copula-Based Water Shortage Risk in Multisource Water Supply Cities," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(14), pages 4877-4894, November.
    7. Mubenga-Tshitaka, Jean-Luc & Muteba Mwamba, John W. & Dikgang, Johane & Gelo, Dambala, 2021. "Risk spillover between climate variables and the agricultural commodity market in East Africa," EconStor Preprints 243160, ZBW - Leibniz Information Centre for Economics.
    8. Xiao Liu & Ping Guo & Qian Tan & Fan Zhang & Yan Huang & Youzhi Wang, 2021. "Drought disaster risk management based on optimal allocation of water resources," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 108(1), pages 285-308, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:223:y:2019:i:c:70. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.