IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v17y2020i13p4654-d377454.html
   My bibliography  Save this article

Analysis and Application of Drought Characteristics Based on Theory of Runs and Copulas in Yunnan, Southwest China

Author

Listed:
  • Liping Wang

    (College of Hydrology and Water Resources, Hohai University, Nanjing 210098, China
    College of Water Conservancy, Yunnan Agricultural University, Kunming 650201, China)

  • Xingnan Zhang

    (College of Hydrology and Water Resources, Hohai University, Nanjing 210098, China)

  • Shufang Wang

    (College of Water Conservancy, Yunnan Agricultural University, Kunming 650201, China)

  • Mohamed Khaled Salahou

    (State Key Laboratory of Hydrology–Water Resources and Hydraulic Engineering, Hohai University, Nanjing 210098, China)

  • Yuanhao Fang

    (College of Hydrology and Water Resources, Hohai University, Nanjing 210098, China)

Abstract

Drought is a complex natural disaster phenomenon. It is of great significance to analyze the occurrence and development of drought events for drought prevention. In this study, two drought characteristic variables (the drought duration and severity) were extracted by using the Theory of Runs based on four drought indexes (i.e., the percentage of precipitation anomaly, the standardized precipitation index, the standardized precipitation evapotranspiration index and the improved comprehensive meteorological drought index). The joint distribution model of drought characteristic variables was built based on four types of Archimedean copulas. The joint cumulative probability and the joint return period of drought events were analyzed and the relationship between the drought characteristics and the actual crop drought reduction area was also studied. The results showed that: (1) The area of the slight drought and the extreme drought were both the zonal increasing distribution from northeast to southwest in Yunnan Province from 1960 to 2015. The area of the high frequency middle drought was mainly distributed in Huize and Zhanyi in Northeast Yunnan, Kunming in Central Yunnan and some areas of Southwest Yunnan, whereas the severe drought was mainly occurred in Deqin, Gongshan and Zhongdian in Northwest Yunnan; (2) The drought duration and severity were fitted the Weibull and Gamma distribution, respectively and the Frank copula function was the optimal joint distribution function. The Drought events were mostly short duration and high severity, long duration and low severity and short duration and low severity. The joint cumulative probability and joint return period were increased with the increase of drought duration and severity; (3) The error range between the theoretical return period and the actual was 0.1–0.4 a. The year of the agricultural disaster can be accurately reflected by the combined return period in Yunnan Province. The research can provide guidelines for the agricultural management in the drought area.

Suggested Citation

  • Liping Wang & Xingnan Zhang & Shufang Wang & Mohamed Khaled Salahou & Yuanhao Fang, 2020. "Analysis and Application of Drought Characteristics Based on Theory of Runs and Copulas in Yunnan, Southwest China," IJERPH, MDPI, vol. 17(13), pages 1-17, June.
  • Handle: RePEc:gam:jijerp:v:17:y:2020:i:13:p:4654-:d:377454
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/17/13/4654/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/17/13/4654/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Dong-Dong Zhang & Deng-Hua Yan & Fan Lu & Yi-Cheng Wang & Jing Feng, 2015. "Copula-based risk assessment of drought in Yunnan province, China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 75(3), pages 2199-2220, February.
    2. Lamneithem Hangshing & Parmendra P. Dabral, 2018. "Multivariate Frequency Analysis of Meteorological Drought Using Copula," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(5), pages 1741-1758, March.
    3. Xiong-Fei Liu & Shi-Xin Wang & Yi Zhou & Fu-Tao Wang & Guang Yang & Wen-Liang Liu, 2016. "Spatial analysis of meteorological drought return periods in China using Copulas," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 80(1), pages 367-388, January.
    4. Francesco Serinaldi & Chris G. Kilsby, 2017. "A Blueprint for Full Collective Flood Risk Estimation: Demonstration for European River Flooding," Risk Analysis, John Wiley & Sons, vol. 37(10), pages 1958-1976, October.
    5. Quang-Tuong Vo & Jae-Min So & Deg-Hyo Bae, 2020. "An Integrated Framework for Extreme Drought Assessments Using the Natural Drought Index, Copula and Gi* Statistic," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(4), pages 1353-1368, March.
    6. J. Shiau, 2006. "Fitting Drought Duration and Severity with Two-Dimensional Copulas," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 20(5), pages 795-815, October.
    7. Xiong-Fei Liu & Shi-Xin Wang & Yi Zhou & Fu-Tao Wang & Guang Yang & Wen-Liang Liu, 2016. "Spatial analysis of meteorological drought return periods in China using Copulas," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 80(1), pages 367-388, January.
    8. Fenech, Jean Pierre & Vosgha, Hamed & Shafik, Salwa, 2015. "Loan default correlation using an Archimedean copula approach: A case for recalibration," Economic Modelling, Elsevier, vol. 47(C), pages 340-354.
    9. Ying Li & Wei Gu & Weijia Cui & Zhiyun Chang & Yingjun Xu, 2015. "Exploration of copula function use in crop meteorological drought risk analysis: a case study of winter wheat in Beijing, China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 77(2), pages 1289-1303, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ming Li & Guiwen Wang & Shengwei Zong & Xurong Chai, 2023. "Copula-Based Assessment and Regionalization of Drought Risk in China," IJERPH, MDPI, vol. 20(5), pages 1-16, February.
    2. Fatih Tosunoglu & Ibrahim Can, 2016. "Application of copulas for regional bivariate frequency analysis of meteorological droughts in Turkey," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 82(3), pages 1457-1477, July.
    3. Neshat Jahannemaei & Payam Khosravinia & Hadi Sanikhani & Rasoul Mirabbasi, 2023. "Toward analyzing meteorological droughts in western Iran: a multivariate approach based on vine copulas," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 116(2), pages 1903-1929, March.
    4. Babak Amirataee & Majid Montaseri, 2017. "The performance of SPI and PNPI in analyzing the spatial and temporal trend of dry and wet periods over Iran," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 86(1), pages 89-106, March.
    5. Rina Wu & Jiquan Zhang & Yuhai Bao & Enliang Guo, 2019. "Run Theory and Copula-Based Drought Risk Analysis for Songnen Grassland in Northeastern China," Sustainability, MDPI, vol. 11(21), pages 1-17, October.
    6. Samantaray, Alok Kumar & Ramadas, Meenu & Panda, Rabindra Kumar, 2022. "Changes in drought characteristics based on rainfall pattern drought index and the CMIP6 multi-model ensemble," Agricultural Water Management, Elsevier, vol. 266(C).
    7. Xiong-Fei Liu & Shi-Xin Wang & Yi Zhou & Fu-Tao Wang & Guang Yang & Wen-Liang Liu, 2016. "Spatial analysis of meteorological drought return periods in China using Copulas," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 80(1), pages 367-388, January.
    8. Zahra Fahimirad & Nazanin Shahkarami, 2021. "The Impact of Climate Change on Hydro-Meteorological Droughts Using Copula Functions," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(12), pages 3969-3993, September.
    9. Dai, Meng & Huang, Shengzhi & Huang, Qiang & Leng, Guoyong & Guo, Yi & Wang, Lu & Fang, Wei & Li, Pei & Zheng, Xudong, 2020. "Assessing agricultural drought risk and its dynamic evolution characteristics," Agricultural Water Management, Elsevier, vol. 231(C).
    10. Xiong-Fei Liu & Shi-Xin Wang & Yi Zhou & Fu-Tao Wang & Guang Yang & Wen-Liang Liu, 2016. "Spatial analysis of meteorological drought return periods in China using Copulas," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 80(1), pages 367-388, January.
    11. Elaheh Motevali Bashi Naeini & Ali Mohammad Akhoond-Ali & Fereydoun Radmanesh & Jahangir Abedi Koupai & Shahrokh Soltaninia, 2021. "Comparison of the Calculated Drought Return Periods Using Tri-variate and Bivariate Copula Functions Under Climate Change Condition," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(14), pages 4855-4875, November.
    12. Ziqiang Xing & Denghua Yan & Cheng Zhang & Gang Wang & Dongdong Zhang, 2015. "Spatial Characterization and Bivariate Frequency Analysis of Precipitation and Runoff in the Upper Huai River Basin, China," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(9), pages 3291-3304, July.
    13. Li, Pei & Huang, Qiang & Huang, Shengzhi & Leng, Guoyong & Peng, Jian & Wang, Hao & Zheng, Xudong & Li, Yifei & Fang, Wei, 2022. "Various maize yield losses and their dynamics triggered by drought thresholds based on Copula-Bayesian conditional probabilities," Agricultural Water Management, Elsevier, vol. 261(C).
    14. F. Todisco & F. Mannocchi & L. Vergni, 2013. "Severity–duration–frequency curves in the mitigation of drought impact: an agricultural case study," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 65(3), pages 1863-1881, February.
    15. Katarzyna Baran-Gurgul, 2022. "The Risk of Extreme Streamflow Drought in the Polish Carpathians—A Two-Dimensional Approach," IJERPH, MDPI, vol. 19(21), pages 1-27, October.
    16. Bing-Chen Jhong & Jung Huang & Ching-Pin Tung, 2019. "Spatial Assessment of Climate Risk for Investigating Climate Adaptation Strategies by Evaluating Spatial-Temporal Variability of Extreme Precipitation," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(10), pages 3377-3400, August.
    17. Zahra Sadat Hosseini & Mahnoosh Moghaddasi & Shahla Paimozd, 2023. "Simultaneous Monitoring of Different Drought Types Using Linear and Nonlinear Combination Approaches," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(3), pages 1125-1151, February.
    18. Jie Yang & Yimin Wang & Jun Yao & Jianxia Chang & Guoxin Xu & Xin Wang & Hui Hu, 2020. "Coincidence probability analysis of hydrologic low-flow under the changing environment in the Wei River Basin," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 103(2), pages 1711-1726, September.
    19. Francesco Serinaldi & Florian Loecker & Chris G. Kilsby & Hubert Bast, 2018. "Flood propagation and duration in large river basins: a data-driven analysis for reinsurance purposes," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 94(1), pages 71-92, October.
    20. Duc Thi Luu, 2022. "Portfolio Correlations in the Bank-Firm Credit Market of Japan," Computational Economics, Springer;Society for Computational Economics, vol. 60(2), pages 529-569, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:17:y:2020:i:13:p:4654-:d:377454. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.