Estimating Changes in the Observed Relationship Between Humidity and Temperature Using Noncrossing Quantile Smoothing Splines
Author
Abstract
Suggested Citation
DOI: 10.1007/s13253-020-00393-4
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Machado, Jose A.F. & Silva, J. M. C. Santos, 2005.
"Quantiles for Counts,"
Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 1226-1237, December.
- Jose A. F. Machado Machado & Joao Santos Silva Santos Silva, 2002. "Quantiles for counts," CeMMAP working papers CWP22/02, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- J.A.F. Machado & J. M. C. Santos Silva, 2003. "Quantiles for Counts," Econometrics 0303001, University Library of Munich, Germany.
- Barreca, Alan I., 2012.
"Climate change, humidity, and mortality in the United States,"
Journal of Environmental Economics and Management, Elsevier, vol. 63(1), pages 19-34.
- Alan Barreca, 2009. "Climate Change, Humidity, and Mortality in the United States," Working Papers 0906, Tulane University, Department of Economics, revised Jul 2009.
- Steven J. Smith & James Edmonds & Corinne A. Hartin & Anupriya Mundra & Katherine Calvin, 2015. "Near-term acceleration in the rate of temperature change," Nature Climate Change, Nature, vol. 5(4), pages 333-336, April.
- Clara Deser & Reto Knutti & Susan Solomon & Adam S. Phillips, 2012. "Communication of the role of natural variability in future North American climate," Nature Climate Change, Nature, vol. 2(11), pages 775-779, November.
- Maria Franco‐Villoria & Marian Scott & Trevor Hoey, 2019. "Spatiotemporal modeling of hydrological return levels: A quantile regression approach," Environmetrics, John Wiley & Sons, Ltd., vol. 30(2), March.
- Jakob Zscheischler & Seth Westra & Bart J. J. M. Hurk & Sonia I. Seneviratne & Philip J. Ward & Andy Pitman & Amir AghaKouchak & David N. Bresch & Michael Leonard & Thomas Wahl & Xuebin Zhang, 2018. "Future climate risk from compound events," Nature Climate Change, Nature, vol. 8(6), pages 469-477, June.
- James B. Elsner & James P. Kossin & Thomas H. Jagger, 2008. "The increasing intensity of the strongest tropical cyclones," Nature, Nature, vol. 455(7209), pages 92-95, September.
- Howard D. Bondell & Brian J. Reich & Huixia Wang, 2010. "Noncrossing quantile regression curve estimation," Biometrika, Biometrika Trust, vol. 97(4), pages 825-838.
- Brian J. Reich, 2012. "Spatiotemporal quantile regression for detecting distributional changes in environmental processes," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 61(4), pages 535-553, August.
- Eun Ryung Lee & Hohsuk Noh & Byeong U. Park, 2014. "Model Selection via Bayesian Information Criterion for Quantile Regression Models," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 109(505), pages 216-229, March.
- Jeremy S. Pal & Elfatih A. B. Eltahir, 2016. "Future temperature in southwest Asia projected to exceed a threshold for human adaptability," Nature Climate Change, Nature, vol. 6(2), pages 197-200, February.
- Thomas Wahl & Shaleen Jain & Jens Bender & Steven D. Meyers & Mark E. Luther, 2015. "Increasing risk of compound flooding from storm surge and rainfall for major US cities," Nature Climate Change, Nature, vol. 5(12), pages 1093-1097, December.
- Ribeiro, Andreia F.S. & Russo, Ana & Gouveia, Célia M. & Páscoa, Patrícia, 2019. "Copula-based agricultural drought risk of rainfed cropping systems," Agricultural Water Management, Elsevier, vol. 223(C), pages 1-1.
- Reich, Brian J. & Fuentes, Montserrat & Dunson, David B., 2011. "Bayesian Spatial Quantile Regression," Journal of the American Statistical Association, American Statistical Association, vol. 106(493), pages 6-20.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Poppick, Andrew & McKinnon, Karen A., 2020. "Observation-based Simulations of Humidity and Temperature Using Quantile Regression," Earth Arxiv bmskp, Center for Open Science.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Paolo Frumento & Nicola Salvati, 2021. "Parametric modeling of quantile regression coefficient functions with count data," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 30(4), pages 1237-1258, October.
- Das, Priyam & Ghosal, Subhashis, 2018. "Bayesian non-parametric simultaneous quantile regression for complete and grid data," Computational Statistics & Data Analysis, Elsevier, vol. 127(C), pages 172-186.
- Poppick, Andrew & McKinnon, Karen A., 2020. "Observation-based Simulations of Humidity and Temperature Using Quantile Regression," Earth Arxiv bmskp, Center for Open Science.
- Luke B. Smith & Brian J. Reich & Amy H. Herring & Peter H. Langlois & Montserrat Fuentes, 2015. "Multilevel quantile function modeling with application to birth outcomes," Biometrics, The International Biometric Society, vol. 71(2), pages 508-519, June.
- Peter Congdon, 2017. "Quantile regression for overdispersed count data: a hierarchical method," Journal of Statistical Distributions and Applications, Springer, vol. 4(1), pages 1-19, December.
- Das, Priyam & Ghosal, Subhashis, 2017. "Bayesian quantile regression using random B-spline series prior," Computational Statistics & Data Analysis, Elsevier, vol. 109(C), pages 121-143.
- Emanuele Bevacqua & Laura Suarez-Gutierrez & Aglaé Jézéquel & Flavio Lehner & Mathieu Vrac & Pascal Yiou & Jakob Zscheischler, 2023. "Advancing research on compound weather and climate events via large ensemble model simulations," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
- Viviana Carcaiso & Leonardo Grilli, 2023. "Quantile regression for count data: jittering versus regression coefficients modelling in the analysis of credits earned by university students after remote teaching," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 32(4), pages 1061-1082, October.
- Chawarat Rotejanaprasert & Andrew B. Lawson, 2018. "A Bayesian Quantile Modeling for Spatiotemporal Relative Risk: An Application to Adverse Risk Detection of Respiratory Diseases in South Carolina, USA," IJERPH, MDPI, vol. 15(9), pages 1-15, September.
- Yun Yang & Surya T. Tokdar, 2017. "Joint Estimation of Quantile Planes Over Arbitrary Predictor Spaces," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(519), pages 1107-1120, July.
- Brian J. Reich & Luke B. Smith, 2013. "Bayesian Quantile Regression for Censored Data," Biometrics, The International Biometric Society, vol. 69(3), pages 651-660, September.
- Zhang, Yitong & Hao, Zengchao & Zhang, Yu, 2023. "Agricultural risk assessment of compound dry and hot events in China," Agricultural Water Management, Elsevier, vol. 277(C).
- J. J. Wijetunge & N. G. P. B. Neluwala, 2023. "Compound flood hazard assessment and analysis due to tropical cyclone-induced storm surges, waves and precipitation: a case study for coastal lowlands of Kelani river basin in Sri Lanka," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 116(3), pages 3979-4007, April.
- Brian J. Reich & Shu Yang & Yawen Guan & Andrew B. Giffin & Matthew J. Miller & Ana Rappold, 2021. "A Review of Spatial Causal Inference Methods for Environmental and Epidemiological Applications," International Statistical Review, International Statistical Institute, vol. 89(3), pages 605-634, December.
- Matteo Coronese & Francesco Lamperti & Francesca Chiaromonte & Andrea Roventini, 2018.
"Natural Disaster Risk and the Distributional Dynamics of Damages,"
LEM Papers Series
2018/22, Laboratory of Economics and Management (LEM), Sant'Anna School of Advanced Studies, Pisa, Italy.
- Matteo Coronese & Francesco Lamperti & Francesco Chiaromonte & Andrea Roventini, 2018. "Natural disaster Risk and the Distributional Dynamics of Damages," Documents de Travail de l'OFCE 2018-26, Observatoire Francais des Conjonctures Economiques (OFCE).
- Fabrizi, Enrico & Salvati, Nicola & Trivisano, Carlo, 2020. "Robust Bayesian small area estimation based on quantile regression," Computational Statistics & Data Analysis, Elsevier, vol. 145(C).
- A Ford Ramsey, 2020. "Probability Distributions of Crop Yields: A Bayesian Spatial Quantile Regression Approach," American Journal of Agricultural Economics, John Wiley & Sons, vol. 102(1), pages 220-239, January.
- Henry R. Scharf & Xinyi Lu & Perry J. Williams & Mevin B. Hooten, 2022. "Constructing Flexible, Identifiable and Interpretable Statistical Models for Binary Data," International Statistical Review, International Statistical Institute, vol. 90(2), pages 328-345, August.
- Guodong Li & Yang Li & Chih-Ling Tsai, 2015. "Quantile Correlations and Quantile Autoregressive Modeling," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(509), pages 246-261, March.
- Chao, Shih-Kang & Härdle, Wolfgang K. & Yuan, Ming, 2021.
"Factorisable Multitask Quantile Regression,"
Econometric Theory, Cambridge University Press, vol. 37(4), pages 794-816, August.
- Shih-Kang Chao & Wolfgang K. Härdle & Ming Yuan, 2016. "Factorisable Multi-Task Quantile Regression," SFB 649 Discussion Papers SFB649DP2016-057, Sonderforschungsbereich 649, Humboldt University, Berlin, Germany.
- Chao, Shih-Kang & Härdle, Wolfgang Karl & Yuan, Ming, 2016. "Factorisable multi-task quantile regression," SFB 649 Discussion Papers 2016-057, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
- Chao, Shih-Kang & Härdle, Wolfgang Karl & Yuan, Ming, 2020. "Factorisable Multitask Quantile Regression," IRTG 1792 Discussion Papers 2020-004, Humboldt University of Berlin, International Research Training Group 1792 "High Dimensional Nonstationary Time Series".
More about this item
Keywords
Dew point; Global Summary of the Day; High-dimensional regularization; Noncrossing quantiles; Quantile regression; Quantile smoothing splines;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jagbes:v:25:y:2020:i:3:d:10.1007_s13253-020-00393-4. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.