IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v177y2016icp264-273.html
   My bibliography  Save this article

Soil moisture tension effect on sugar cane growth and yield

Author

Listed:
  • Alamilla-Magaña, J.C.
  • Carrillo-Ávila, E.
  • Obrador-Olán, J.J.
  • Landeros-Sánchez, C.
  • Vera-Lopez, J.
  • Juárez-López, J.F.

Abstract

An experimental plot was established in Campeche, México, to assess the effect of moisture tension on sugarcane growth and yield. Irrigation and water efficiencies were calculated as well as the cane and sucrose virtual water contents. Three levels of soil moisture tensions (−15kPa in T1, −45kPa in T2, −75kPa in T3) were used to begin irrigation in treatments compared with a control without irrigation (T4), in an experimental randomized block design. Height and stem diameter were significantly higher (p≤0.05) in T1, treatment where also significantly higher cane and sucrose yields were observed (134.7 and 19.9tha−1, respectively). No significant differences in industrially relevant variables for the quality of sugar cane juice were found, although in T3 the highest Brix degrees and sucrose content in juice were obtained. Also in this treatment the highest irrigation water use efficiency (IWUE) was found, with an average increase in cane weight of 405kgmm−1. Overall, the IWUE and the total water use efficiencies were directly and inversely proportional to the soil moisture tension, respectively. Irrigation water applied varied from 14.0 to 19.56% of the total water depth received by the crop for treatments T3 and T2, respectively, and contributed to a gain in cane and sucrose yields of 179–252%, and from 181 to 242%, for T3 and T1 treatments, respectively. For total cane and sucrose virtual water values, a direct relationship with the soil moisture tension was found. The highest value in cane blue virtual water was found in T2 (0.0274m3kg−1) and the lower in T3 (0.0247m3kg−1). In contrast, higher values of cane green virtual water were found at higher soil moisture tensions (Control treatment, 0.271m3kg−1). Since the final sucrose yield was strongly linked to the cane yield, a very similar behavior as for cane blue and green virtual water values was observed for sucrose blue and green water contents.

Suggested Citation

  • Alamilla-Magaña, J.C. & Carrillo-Ávila, E. & Obrador-Olán, J.J. & Landeros-Sánchez, C. & Vera-Lopez, J. & Juárez-López, J.F., 2016. "Soil moisture tension effect on sugar cane growth and yield," Agricultural Water Management, Elsevier, vol. 177(C), pages 264-273.
  • Handle: RePEc:eee:agiwat:v:177:y:2016:i:c:p:264-273
    DOI: 10.1016/j.agwat.2016.08.004
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377416302888
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2016.08.004?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Batchelor, C. H. & Soopramanien, G. C. & Bell, J. P. & Nayamuth, R. & Hodnett, M. G., 1990. "Importance of irrigation regime, dripline placement and row spacing in the drip irrigation of sugar cane," Agricultural Water Management, Elsevier, vol. 17(1-3), pages 75-94, January.
    2. Aldaya, M.M. & Allan, J.A. & Hoekstra, A.Y., 2010. "Strategic importance of green water in international crop trade," Ecological Economics, Elsevier, vol. 69(4), pages 887-894, February.
    3. Wang, Feng-Xin & Kang, Yaohu & Liu, Shi-Ping & Hou, Xiao-Yan, 2007. "Effects of soil matric potential on potato growth under drip irrigation in the North China Plain," Agricultural Water Management, Elsevier, vol. 88(1-3), pages 34-42, March.
    4. Guangyao Deng & Liujuan Wang & Yanan Song, 2015. "Effect of Variation of Water-Use Efficiency on Structure of Virtual Water Trade - Analysis Based on Input–Output Model," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(8), pages 2947-2965, June.
    5. Wiedenfeld, Bob, 2004. "Scheduling water application on drip irrigated sugarcane," Agricultural Water Management, Elsevier, vol. 64(2), pages 169-181, January.
    6. Gaudin, Remi & Rapanoelina, Mamisoa, 2003. "Irrigation based on a nomogram using soil suction measurements," Agricultural Water Management, Elsevier, vol. 58(1), pages 45-53, January.
    7. Rivera-Hernández, Benigno & Carrillo-Ávila, Eugenio & Obrador-Olán, José Jesús & Juárez-López, José Francisco & Aceves-Navarro, Lorenzo A. & García-López, Eustolia, 2009. "Soil moisture tension and phosphate fertilization on yield components of A-7573 sweet corn (Zea mays L.) hybrid, in Campeche, Mexico," Agricultural Water Management, Elsevier, vol. 96(9), pages 1285-1292, September.
    8. Taleb Abu-Sharar & Emad Al-Karablieh & Munther Haddadin, 2012. "Role of Virtual Water in Optimizing Water Resources Management in Jordan," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(14), pages 3977-3993, November.
    9. Wiedenfeld, Robert P., 2000. "Water stress during different sugarcane growth periods on yield and response to N fertilization," Agricultural Water Management, Elsevier, vol. 43(2), pages 173-182, March.
    10. Hodnett, M. G. & Bell, J. P. & Ah Koon, P. D. & Soopramanien, G. C. & Batchelor, C. H., 1990. "The control of drip irrigation of sugarcane using "index" tensiometers: Some comparisons with control by the water budget method," Agricultural Water Management, Elsevier, vol. 17(1-3), pages 189-207, January.
    11. Hoekstra, Arjen Y. & Chapagain, Ashok K., 2007. "The water footprints of Morocco and the Netherlands: Global water use as a result of domestic consumption of agricultural commodities," Ecological Economics, Elsevier, vol. 64(1), pages 143-151, October.
    12. Rivera-Hernández, B. & Carrillo-Ávila, E. & Obrador-Olán, J.J. & Juárez-López, J.F. & Aceves-Navarro, L.A., 2010. "Morphological quality of sweet corn (Zea mays L.) ears as response to soil moisture tension and phosphate fertilization in Campeche, Mexico," Agricultural Water Management, Elsevier, vol. 97(9), pages 1365-1374, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Coelho, Rubens Duarte & Lizcano, Jonathan Vásquez & da Silva Barros, Timóteo Herculino & da Silva Barbosa, Fernando & Leal, Daniel Philipe Veloso & da Costa Santos, Lucas & Ribeiro, Nathalia Lopes & J, 2019. "Effect of water stress on renewable energy from sugarcane biomass," Renewable and Sustainable Energy Reviews, Elsevier, vol. 103(C), pages 399-407.
    2. S. S. Tabriz & M. A. Kader & M. Rokonuzzaman & M. S. Hossen & M. A. Awal, 2021. "Prospects and challenges of conservation agriculture in Bangladesh for sustainable sugarcane cultivation," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(11), pages 15667-15694, November.
    3. Gutiérrez-Gómez, Celia & Carrillo-Avila, Eugenio & Landeros-Sánchez, Cesáreo & Coh-Méndez, Domingo & Monsalvo-Espinosa, Avelardo & Arreola-Enríquez, Jesús & Pimentel-López, José, 2018. "Soil moisture tension as an alternative for improving sustainable use of irrigation water for habanero chilies (Capsicum chinense Jacq.)," Agricultural Water Management, Elsevier, vol. 204(C), pages 28-37.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gutiérrez-Gómez, Celia & Carrillo-Avila, Eugenio & Landeros-Sánchez, Cesáreo & Coh-Méndez, Domingo & Monsalvo-Espinosa, Avelardo & Arreola-Enríquez, Jesús & Pimentel-López, José, 2018. "Soil moisture tension as an alternative for improving sustainable use of irrigation water for habanero chilies (Capsicum chinense Jacq.)," Agricultural Water Management, Elsevier, vol. 204(C), pages 28-37.
    2. Rivera-Hernández, B. & Carrillo-Ávila, E. & Obrador-Olán, J.J. & Juárez-López, J.F. & Aceves-Navarro, L.A., 2010. "Morphological quality of sweet corn (Zea mays L.) ears as response to soil moisture tension and phosphate fertilization in Campeche, Mexico," Agricultural Water Management, Elsevier, vol. 97(9), pages 1365-1374, September.
    3. Guangyao Deng & Liujuan Wang & Yanan Song, 2015. "Effect of Variation of Water-Use Efficiency on Structure of Virtual Water Trade - Analysis Based on Input–Output Model," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(8), pages 2947-2965, June.
    4. María Jesús Beltrán & Esther Velázquez, 2011. "Del metabolismo social al metabolismo hídrico," Documentos de Trabajo de la Asociación de Economía Ecológica en España 01_2011, Asociación de Economía Ecológica en España.
    5. Yu Zhang & Qing Tian & Huan Hu & Miao Yu, 2019. "Water Footprint of Food Consumption by Chinese Residents," IJERPH, MDPI, vol. 16(20), pages 1-15, October.
    6. Xiaoling Su & Jianfang Li & Vijay Singh, 2014. "Optimal Allocation of Agricultural Water Resources Based on Virtual Water Subdivision in Shiyang River Basin," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(8), pages 2243-2257, June.
    7. Zhang, Tibin & Dong, Qin’ge & Zhan, Xiaoyun & He, Jianqiang & Feng, Hao, 2019. "Moving salts in an impermeable saline-sodic soil with drip irrigation to permit wolfberry production," Agricultural Water Management, Elsevier, vol. 213(C), pages 636-645.
    8. Dingre, S.K. & Gorantiwar, S.D., 2020. "Determination of the water requirement and crop coefficient values of sugarcane by field water balance method in semiarid region," Agricultural Water Management, Elsevier, vol. 232(C).
    9. Jing Liu & Mengyang Wu & Zhongbo Yu, 2018. "Evaluation of Environmental Impacts Due to Blue Water Consumption in China from Production and Consumption Perspectives," IJERPH, MDPI, vol. 15(11), pages 1-17, November.
    10. Wang, Dan & Kang, Yaohu & Wan, Shuqin, 2007. "Effect of soil matric potential on tomato yield and water use under drip irrigation condition," Agricultural Water Management, Elsevier, vol. 87(2), pages 180-186, January.
    11. Zhang, You-Liang & Feng, Shao-Yuan & Wang, Feng-Xin & Binley, Andrew, 2018. "Simulation of soil water flow and heat transport in drip irrigated potato field with raised beds and full plastic-film mulch in a semiarid area," Agricultural Water Management, Elsevier, vol. 209(C), pages 178-187.
    12. Jiang, Meihui & An, Haizhong & Guan, Qing & Sun, Xiaoqi, 2018. "Global embodied mineral flow between industrial sectors: A network perspective," Resources Policy, Elsevier, vol. 58(C), pages 192-201.
    13. Peng Zhang & Zihan Xu & Weiguo Fan & Jiahui Ren & Ranran Liu & Xiaobin Dong, 2019. "Structure Dynamics and Risk Assessment of Water-Energy-Food Nexus: A Water Footprint Approach," Sustainability, MDPI, vol. 11(4), pages 1-18, February.
    14. Lowe, Benjamin H. & Oglethorpe, David R. & Choudhary, Sonal, 2020. "Comparing the economic value of virtual water with volumetric and stress-weighted approaches: A case for the tea supply chain," Ecological Economics, Elsevier, vol. 172(C).
    15. Li, Dan & Wan, Shuqin & Li, Xiaobin & Kang, Yaohu & Han, Xiaoyu, 2022. "Effect of water-salt regulation drip irrigation with saline water on tomato quality in an arid region," Agricultural Water Management, Elsevier, vol. 261(C).
    16. Yu, Yaze & Jiao, Yan & Yang, Wenzhu & Song, Chunni & Zhang, Jing & Liu, Yubin, 2022. "Mechanisms underlying nitrous oxide emissions and nitrogen leaching from potato fields under drip irrigation and furrow irrigation," Agricultural Water Management, Elsevier, vol. 260(C).
    17. Chen, Ming & Kang, Yaohu & Wan, Shuqin & Liu, Shi-ping, 2009. "Drip irrigation with saline water for oleic sunflower (Helianthus annuus L.)," Agricultural Water Management, Elsevier, vol. 96(12), pages 1766-1772, December.
    18. Rongrong Xu & Yongxiang Wu & Gaoxu Wang & Xuan Zhang & Wei Wu & Zan Xu, 2019. "Evaluation of industrial water use efficiency considering pollutant discharge in China," PLOS ONE, Public Library of Science, vol. 14(8), pages 1-22, August.
    19. Dingre, S.K. & Gorantiwar, S.D., 2021. "Soil moisture based deficit irrigation management for sugarcane (Saccharum officinarum L.) in semiarid environment," Agricultural Water Management, Elsevier, vol. 245(C).
    20. Gao, Jie & Xie, Pengxuan & Zhuo, La & Shang, Kehui & Ji, Xiangxiang & Wu, Pute, 2021. "Water footprints of irrigated crop production and meteorological driving factors at multiple temporal scales," Agricultural Water Management, Elsevier, vol. 255(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:177:y:2016:i:c:p:264-273. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.