IDEAS home Printed from https://ideas.repec.org/a/eee/ecolec/v69y2010i4p887-894.html
   My bibliography  Save this article

Strategic importance of green water in international crop trade

Author

Listed:
  • Aldaya, M.M.
  • Allan, J.A.
  • Hoekstra, A.Y.

Abstract

Virtual water is the volume of water used to produce a commodity or service. Hitherto, most virtual water 'trade' studies have focused on its potential contribution to saving water, especially in water short regions. Very little, however, has been said about the opportunity cost of the associated water. The present research critically evaluates the strategic importance of green water (soil water originating from rainfall) in relation to international commodity trade. Besides having a lower opportunity cost, the use of green water for the production of crops has generally less negative environmental externalities than the use of blue water (irrigation with water abstracted from ground or surface water systems). Although it is widely known that major grain exporters - the USA, Canada, France, Australia and Argentina - produce grain in highly productive rain-fed conditions, green water volumes in exports have rarely been estimated. The present study corroborates that green water is by far the largest share of virtual water in maize, soybean and wheat exports from its main exporting countries (USA, Canada, Australia and Argentina) during the period 2000-2004. Insofar virtual water is 'traded' towards water-scarce nations that heavily depend on their blue water resources, green virtual-water 'trade' related to these commodities plays a role in ensuring water and water-dependent food security and avoiding further potential damage to the water environments in both importing and exporting countries. This potential of international green virtual-water 'trade', however, is constrained by factors such as technology, the potential for further increases in the productivity of soil and irrigation water, the level of socio-economic development, national food policies and international trade agreements.

Suggested Citation

  • Aldaya, M.M. & Allan, J.A. & Hoekstra, A.Y., 2010. "Strategic importance of green water in international crop trade," Ecological Economics, Elsevier, vol. 69(4), pages 887-894, February.
  • Handle: RePEc:eee:ecolec:v:69:y:2010:i:4:p:887-894
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0921-8009(09)00446-7
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chapagain, A.K. & Hoekstra, A.Y. & Savenije, H.H.G. & Gautam, R., 2006. "The water footprint of cotton consumption: An assessment of the impact of worldwide consumption of cotton products on the water resources in the cotton producing countries," Ecological Economics, Elsevier, vol. 60(1), pages 186-203, November.
    2. A. Hoekstra & A. Chapagain, 2007. "Water footprints of nations: Water use by people as a function of their consumption pattern," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 21(1), pages 35-48, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. María Jesús Beltrán & Esther Velázquez, 2011. "Del metabolismo social al metabolismo hídrico," Documentos de Trabajo de la Asociación de Economía Ecológica en España 01_2011, Asociación de Economía Ecológica en España.
    2. Wiedmann, Thomas, 2009. "A first empirical comparison of energy Footprints embodied in trade -- MRIO versus PLUM," Ecological Economics, Elsevier, vol. 68(7), pages 1975-1990, May.
    3. Yu Zhang & Qing Tian & Huan Hu & Miao Yu, 2019. "Water Footprint of Food Consumption by Chinese Residents," IJERPH, MDPI, vol. 16(20), pages 1-15, October.
    4. Neumann, Kathleen & Stehfest, Elke & Verburg, Peter H. & Siebert, Stefan & Müller, Christoph & Veldkamp, Tom, 2011. "Exploring global irrigation patterns: A multilevel modelling approach," Agricultural Systems, Elsevier, vol. 104(9), pages 703-713.
    5. Dennis Wichelns, 2010. "Virtual Water: A Helpful Perspective, but not a Sufficient Policy Criterion," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(10), pages 2203-2219, August.
    6. Wu, X.F. & Chen, G.Q., 2018. "Coal use embodied in globalized world economy: From source to sink through supply chain," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 978-993.
    7. Mohammad Suhail, 2024. "Assessment of water footprint under wheat cultivation in Purvanchal Uttar Pradesh, Northern India," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 26(10), pages 24957-24969, October.
    8. Esther Velázquez & Cristina Madrid & María Beltrán, 2011. "Rethinking the Concepts of Virtual Water and Water Footprint in Relation to the Production–Consumption Binomial and the Water–Energy Nexus," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 25(2), pages 743-761, January.
    9. Markus Berger & Jazmin Campos & Mauro Carolli & Ianna Dantas & Silvia Forin & Ervin Kosatica & Annika Kramer & Natalia Mikosch & Hamideh Nouri & Anna Schlattmann & Falk Schmidt & Anna Schomberg & Elsa, 2021. "Advancing the Water Footprint into an Instrument to Support Achieving the SDGs – Recommendations from the “Water as a Global Resources” Research Initiative (GRoW)," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(4), pages 1291-1298, March.
    10. Sandin, Gustav & Peters, Greg M. & Svanström, Magdalena, 2013. "Moving down the cause-effect chain of water and land use impacts: An LCA case study of textile fibres," Resources, Conservation & Recycling, Elsevier, vol. 73(C), pages 104-113.
    11. van Oel, P.R. & Mekonnen, M.M. & Hoekstra, A.Y., 2009. "The external water footprint of the Netherlands: Geographically-explicit quantification and impact assessment," Ecological Economics, Elsevier, vol. 69(1), pages 82-92, November.
    12. Okadera, Tomohiro & Chontanawat, Jaruwan & Gheewala, Shabbir H., 2014. "Water footprint for energy production and supply in Thailand," Energy, Elsevier, vol. 77(C), pages 49-56.
    13. Elena, Galan-del-Castillo & Esther, Velazquez, 2010. "From water to energy: The virtual water content and water footprint of biofuel consumption in Spain," Energy Policy, Elsevier, vol. 38(3), pages 1345-1352, March.
    14. Aldaya, M.M. & Hoekstra, A.Y., 2010. "The water needed for Italians to eat pasta and pizza," Agricultural Systems, Elsevier, vol. 103(6), pages 351-360, July.
    15. Ehsan Qasemipour & Ali Abbasi & Farhad Tarahomi, 2020. "Water-Saving Scenarios Based on Input–Output Analysis and Virtual Water Concept: A Case in Iran," Sustainability, MDPI, vol. 12(3), pages 1-16, January.
    16. Arjen Y. Hoekstra, 2017. "Water Footprint Assessment: Evolvement of a New Research Field," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(10), pages 3061-3081, August.
    17. Maite Aldaya & Pedro Martínez-Santos & M. Llamas, 2010. "Incorporating the Water Footprint and Virtual Water into Policy: Reflections from the Mancha Occidental Region, Spain," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(5), pages 941-958, March.
    18. Okadera, Tomohiro & Geng, Yong & Fujita, Tsuyoshi & Dong, Huijuan & Liu, Zhu & Yoshida, Noboru & Kanazawa, Takaaki, 2015. "Evaluating the water footprint of the energy supply of Liaoning Province, China: A regional input–output analysis approach," Energy Policy, Elsevier, vol. 78(C), pages 148-157.
    19. Hoekstra, A.Y., 2009. "Human appropriation of natural capital: A comparison of ecological footprint and water footprint analysis," Ecological Economics, Elsevier, vol. 68(7), pages 1963-1974, May.
    20. Sangam Shrestha & Vishnu Pandey & Chawalit Chanamai & Debapi Ghosh, 2013. "Green, Blue and Grey Water Footprints of Primary Crops Production in Nepal," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(15), pages 5223-5243, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecolec:v:69:y:2010:i:4:p:887-894. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/ecolecon .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.