IDEAS home Printed from https://ideas.repec.org/a/spr/endesu/v23y2021i11d10.1007_s10668-021-01330-2.html
   My bibliography  Save this article

Prospects and challenges of conservation agriculture in Bangladesh for sustainable sugarcane cultivation

Author

Listed:
  • S. S. Tabriz

    (Bangladesh Sugarcrop Research Institute
    Bangladesh Agricultural University)

  • M. A. Kader

    (Rural Development Academy (RDA))

  • M. Rokonuzzaman

    (Bangladesh Sugarcrop Research Institute)

  • M. S. Hossen

    (Bangladesh Sugarcrop Research Institute)

  • M. A. Awal

    (Bangladesh Agricultural University)

Abstract

Sugarcane is an industrial crop globally used for producing biofuels and bioproducts and is the only source of white sugar in Bangladesh. However, labour-dependent cultivation and climate change are responsible for the higher production costs and lower yield of sugarcane, and these factors are barriers to sustainable sugarcane farming in Bangladesh. In this paper, the prospects of existing sugarcane farming practices are described, and some improved cultivation and management practices addressing the principles of conservation agriculture (CA) in overcoming these barriers are evaluated. Excessive tillage, burning of trash after harvesting, and mono-cropping have been identified as crucial factors that increase sugarcane production cost, deteriorating soil health, and decreasing cane yields. Several improved conservation tillage machines used for cereals, pulse, and other crops are becoming more accessible to farmers in Bangladesh, but these machines are not used for sugarcane crops. Minimum tillage can also be a resource-saving tillage option for cultivating sugarcane but is limited in sugarcane production owing to the absence of suitable machinery. However, the irrational removal and burning of the residue in the sugarcane farming systems may have adverse effects on the environment. Intercropping not only increases economic benefits but also minimises the negative impact of mono-cropping. We suggest that minimum tillage, residue mulching, and intercropping should be applied as profitable and sustainable cultivation practices in sugarcane farming. Therefore, both research and extension activities addressing the use of appropriate CA technologies, including conservation tillage machinery improvements, could help to achieve sustainable sugarcane farming in Bangladesh.

Suggested Citation

  • S. S. Tabriz & M. A. Kader & M. Rokonuzzaman & M. S. Hossen & M. A. Awal, 2021. "Prospects and challenges of conservation agriculture in Bangladesh for sustainable sugarcane cultivation," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(11), pages 15667-15694, November.
  • Handle: RePEc:spr:endesu:v:23:y:2021:i:11:d:10.1007_s10668-021-01330-2
    DOI: 10.1007/s10668-021-01330-2
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10668-021-01330-2
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10668-021-01330-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mangi Lal Jat & Debashis Chakraborty & Jagdish Kumar Ladha & Dharamvir Singh Rana & Mahesh Kumar Gathala & Andrew McDonald & Bruno Gerard, 2020. "Conservation agriculture for sustainable intensification in South Asia," Nature Sustainability, Nature, vol. 3(4), pages 336-343, April.
    2. Alamilla-Magaña, J.C. & Carrillo-Ávila, E. & Obrador-Olán, J.J. & Landeros-Sánchez, C. & Vera-Lopez, J. & Juárez-López, J.F., 2016. "Soil moisture tension effect on sugar cane growth and yield," Agricultural Water Management, Elsevier, vol. 177(C), pages 264-273.
    3. K. M. Atikur Rahman & Dunfu Zhang, 2018. "Effects of Fertilizer Broadcasting on the Excessive Use of Inorganic Fertilizers and Environmental Sustainability," Sustainability, MDPI, vol. 10(3), pages 1-15, March.
    4. Deokae Tai Balasaheb, 2013. "Quantification of Yield Gaps in Different Planting Types of Sugarcane in Maharashtra," Working Papers id:5373, eSocialSciences.
    5. Lalani, Baqir & Dorward, Peter & Holloway, Garth, 2017. "Farm-level Economic Analysis - Is Conservation Agriculture Helping the Poor?," Ecological Economics, Elsevier, vol. 141(C), pages 144-153.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dutta, S.K. & Laing, Alison & Kumar, Sanjay & Shambhavi, Shweta & Kumar, Sunil & Kumar, Birender & Verma, D.K. & Kumar, Arun & Singh, Ravi Gopal & Gathala, Mahesh, 2023. "Sustainability, productivity, profitability and nutritional diversity of six cropping systems under conservation agriculture: A long term study in eastern India," Agricultural Systems, Elsevier, vol. 207(C).
    2. Huong Thi Thuy Dao & Jeong Min Seo & Jonathan O. Hernandez & Si Ho Han & Woo Bin Youn & Ji Young An & Byung Bae Park, 2020. "Effective Placement Methods of Vermicompost Application in Urban Tree Species: Implications for Sustainable Urban Afforestation," Sustainability, MDPI, vol. 12(14), pages 1-13, July.
    3. Sriroop Chaudhuri & Mimi Roy & Louis M. McDonald & Yves Emendack, 2023. "Land Degradation–Desertification in Relation to Farming Practices in India: An Overview of Current Practices and Agro-Policy Perspectives," Sustainability, MDPI, vol. 15(8), pages 1-27, April.
    4. Qiuwei Bai & Hongpin Luo & Xinglan Fu & Xin Zhang & Guanglin Li, 2023. "Design and Experiment of Lightweight Dual-Mode Automatic Variable-Rate Fertilization Device and Control System," Agriculture, MDPI, vol. 13(6), pages 1-20, May.
    5. Guillermo Alexis Vergel-Rangel & Pablo Emilio Escamilla-García & Raúl Horacio Camarillo-López & Jair Azael Esquivel-Guzmán & Francisco Pérez-Soto, 2021. "The environmental impact of nopal (Opuntia ficus-indica) production in Mexico City, Mexico through a life cycle assessment (LCA)," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(12), pages 18068-18095, December.
    6. Lalani, Baqir & Aminpour, Payam & Gray, Steven & Williams, Meredith & Büchi, Lucie & Haggar, Jeremy & Grabowski, Philip & Dambiro, José, 2021. "Mapping farmer perceptions, Conservation Agriculture practices and on-farm measurements: The role of systems thinking in the process of adoption," Agricultural Systems, Elsevier, vol. 191(C).
    7. Gatto, Marcel & Balie, Jean & Hareau, Guy, 2021. "The Future of Sustainable Intensification of Rice-Potato Agri-Food Systems in Asia," SocArXiv 3ba5x, Center for Open Science.
    8. Lalani, Baqir & Lanza, Gracia & Leiva, Benjamin & Mercado, Leida & Haggar, Jeremy, 2024. "Shade versus intensification: Trade-off or synergy for profitability in coffee agroforestry systems?," Agricultural Systems, Elsevier, vol. 214(C).
    9. Arthi, K. & Saravanakumar, V. & Balasubramanian, R., 2016. "Is Sustainable Sugarcane Initiative (SSI) Technology More Profitable than Conventional Method for Sugarcane Production? — An Economic Analysis," Agricultural Economics Research Review, Agricultural Economics Research Association (India), vol. 29(01).
    10. Akter, Shaheen & Gathala, Mahesh K. & Timsina, Jagadish & Islam, Saiful & Rahman, Mahbubur & Hassan, Mustafa Kamrul & Ghosh, Anup Kumar, 2021. "Adoption of conservation agriculture-based tillage practices in the rice-maize systems in Bangladesh," World Development Perspectives, Elsevier, vol. 21(C).
    11. Sang-Mo Kang & Arjun Adhikari & Dibya Bhatta & Ho-Jun Gam & Min-Ji Gim & Joon-Ik Son & Jin Y. Shin & In-Jung Lee, 2022. "Comparison of Effects of Chemical and Food Waste-Derived Fertilizers on the Growth and Nutrient Content of Lettuce ( Lactuca sativa L.)," Resources, MDPI, vol. 11(2), pages 1-12, February.
    12. De Leijster, V. & Verburg, R.W. & Santos, M.J. & Wassen, M.J. & Martínez-Mena, M. & de Vente, J. & Verweij, P.A., 2020. "Almond farm profitability under agroecological management in south-eastern Spain: Accounting for externalities and opportunity costs," Agricultural Systems, Elsevier, vol. 183(C).
    13. Azhari, Mohamed El & Hamadi, Youssef El & Boughlala, Mohamed & Hattab, Samia, 2024. "Factors Affecting the Adoption of Recommended Fertilizer Doses by Wheat Farmers in the Casablanca-Settat Region of Morocco," AGRIS on-line Papers in Economics and Informatics, Czech University of Life Sciences Prague, Faculty of Economics and Management, vol. 16(2), June.
    14. Wang, Xiukang & Guo, Tao & Wang, Yi & Xing, Yingying & Wang, Yanfeng & He, Xiaolong, 2020. "Exploring the optimization of water and fertilizer management practices for potato production in the sandy loam soils of Northwest China based on PCA," Agricultural Water Management, Elsevier, vol. 237(C).
    15. Xiao, Liangang & Lin, Yi & Chen, Deliang & Zhao, Kebing & Wang, Yudi & You, Zengtao & Zhao, Rongqin & Xie, Zhixiang & Liu, Junguo, 2024. "Maximizing crop yield and water productivity through biochar application: A global synthesis of field experiments," Agricultural Water Management, Elsevier, vol. 305(C).
    16. Qiangsheng Wang & Kunlong Yu & Hui Zhang, 2022. "Controlled-Release Fertilizer Improves Rice Matter Accumulation Characteristics and Yield in Rice–Crayfish Coculture," Agriculture, MDPI, vol. 12(10), pages 1-17, October.
    17. Olayinka Omotosho & Adebayo Oke & Azarel Uthman & Adekunle Atta & Emmanuel Ezaka, 2021. "Development of a manually operated organic and inorganic fertiliser applicator for smallholder farmers," Research in Agricultural Engineering, Czech Academy of Agricultural Sciences, vol. 67(2), pages 51-57.
    18. Reza Movahedi & Mahboobeh Ataei-Asad & Taraneh Sarami-Foroushani, 2024. "Changing potato farmers’ behavior against only the chemical fertilizers to promote sustainable agricultural practice in Hamedan Province, Iran," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 26(9), pages 24359-24380, September.
    19. Waqas, Muhammad & Yahya, Farzan & Ahmed, Ammar & Rasool, Yasir & Hongbo, Li, 2021. "Unlocking employee's green behavior in fertilizer industry: the role of green HRM practices and psychological ownership," International Food and Agribusiness Management Review, International Food and Agribusiness Management Association, vol. 24(5), May.
    20. Nawab Khan & Ram L. Ray & Hazem S. Kassem & Muhammad Ihtisham & Abdullah & Simplice A. Asongu & Stephen Ansah & Shemei Zhang, 2021. "Toward Cleaner Production: Can Mobile Phone Technology Help Reduce Inorganic Fertilizer Application? Evidence Using a National Level Dataset," Land, MDPI, vol. 10(10), pages 1-19, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:endesu:v:23:y:2021:i:11:d:10.1007_s10668-021-01330-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.