IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v96y2009i9p1285-1292.html
   My bibliography  Save this article

Soil moisture tension and phosphate fertilization on yield components of A-7573 sweet corn (Zea mays L.) hybrid, in Campeche, Mexico

Author

Listed:
  • Rivera-Hernández, Benigno
  • Carrillo-Ávila, Eugenio
  • Obrador-Olán, José Jesús
  • Juárez-López, José Francisco
  • Aceves-Navarro, Lorenzo A.
  • García-López, Eustolia

Abstract

The effect of moisture tension and doses of phosphate fertilization on yield components of sweet corn A-7573 (Zea mays L.) hybrid, in a Calcium Vertisol were evaluated. Four levels of soil moisture tension, ranging from -5 to -80kPa, and three levels of phosphate fertilization: 60, 80, and 100kgha-1 were studied. In order to evaluate the effect of the experimental treatments, plant growth, development, and yield were monitored. Treatments were distributed using the randomized complete block design (RCB) for divided plots of experimental units. ANOVA analysis indicated that the effects on more humid treatments (-5 and -30kPa) were statistically equivalent, however were different from the effect of -55kPa treatment, which in turn was statistically different from the effect of the driest treatment (p

Suggested Citation

  • Rivera-Hernández, Benigno & Carrillo-Ávila, Eugenio & Obrador-Olán, José Jesús & Juárez-López, José Francisco & Aceves-Navarro, Lorenzo A. & García-López, Eustolia, 2009. "Soil moisture tension and phosphate fertilization on yield components of A-7573 sweet corn (Zea mays L.) hybrid, in Campeche, Mexico," Agricultural Water Management, Elsevier, vol. 96(9), pages 1285-1292, September.
  • Handle: RePEc:eee:agiwat:v:96:y:2009:i:9:p:1285-1292
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378-3774(09)00097-3
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wang, Dan & Kang, Yaohu & Wan, Shuqin, 2007. "Effect of soil matric potential on tomato yield and water use under drip irrigation condition," Agricultural Water Management, Elsevier, vol. 87(2), pages 180-186, January.
    2. Payero, Jose O. & Melvin, Steven R. & Irmak, Suat & Tarkalson, David, 2006. "Yield response of corn to deficit irrigation in a semiarid climate," Agricultural Water Management, Elsevier, vol. 84(1-2), pages 101-112, July.
    3. Oktem, Abdullah & Simsek, Mehmet & Oktem, A. Gulgun, 2003. "Deficit irrigation effects on sweet corn (Zea mays saccharata Sturt) with drip irrigation system in a semi-arid region: I. Water-yield relationship," Agricultural Water Management, Elsevier, vol. 61(1), pages 63-74, June.
    4. Moser, Samuel B. & Feil, Boy & Jampatong, Sansern & Stamp, Peter, 2006. "Effects of pre-anthesis drought, nitrogen fertilizer rate, and variety on grain yield, yield components, and harvest index of tropical maize," Agricultural Water Management, Elsevier, vol. 81(1-2), pages 41-58, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Alamilla-Magaña, J.C. & Carrillo-Ávila, E. & Obrador-Olán, J.J. & Landeros-Sánchez, C. & Vera-Lopez, J. & Juárez-López, J.F., 2016. "Soil moisture tension effect on sugar cane growth and yield," Agricultural Water Management, Elsevier, vol. 177(C), pages 264-273.
    2. Gutiérrez-Gómez, Celia & Carrillo-Avila, Eugenio & Landeros-Sánchez, Cesáreo & Coh-Méndez, Domingo & Monsalvo-Espinosa, Avelardo & Arreola-Enríquez, Jesús & Pimentel-López, José, 2018. "Soil moisture tension as an alternative for improving sustainable use of irrigation water for habanero chilies (Capsicum chinense Jacq.)," Agricultural Water Management, Elsevier, vol. 204(C), pages 28-37.
    3. Rivera-Hernández, B. & Carrillo-Ávila, E. & Obrador-Olán, J.J. & Juárez-López, J.F. & Aceves-Navarro, L.A., 2010. "Morphological quality of sweet corn (Zea mays L.) ears as response to soil moisture tension and phosphate fertilization in Campeche, Mexico," Agricultural Water Management, Elsevier, vol. 97(9), pages 1365-1374, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rivera-Hernández, B. & Carrillo-Ávila, E. & Obrador-Olán, J.J. & Juárez-López, J.F. & Aceves-Navarro, L.A., 2010. "Morphological quality of sweet corn (Zea mays L.) ears as response to soil moisture tension and phosphate fertilization in Campeche, Mexico," Agricultural Water Management, Elsevier, vol. 97(9), pages 1365-1374, September.
    2. Comas, Louise H. & Trout, Thomas J. & DeJonge, Kendall C. & Zhang, Huihui & Gleason, Sean M., 2019. "Water productivity under strategic growth stage-based deficit irrigation in maize," Agricultural Water Management, Elsevier, vol. 212(C), pages 433-440.
    3. Mansouri-Far, Cyrus & Modarres Sanavy, Seyed Ali Mohammad & Saberali, Seyed Farhad, 2010. "Maize yield response to deficit irrigation during low-sensitive growth stages and nitrogen rate under semi-arid climatic conditions," Agricultural Water Management, Elsevier, vol. 97(1), pages 12-22, January.
    4. Manning, Dale T. & Lurbé, Salvador & Comas, Louise H. & Trout, Thomas J. & Flynn, Nora & Fonte, Steven J., 2018. "Economic viability of deficit irrigation in the Western US," Agricultural Water Management, Elsevier, vol. 196(C), pages 114-123.
    5. Ko, Jonghan & Piccinni, Giovanni & Steglich, Evelyn, 2009. "Using EPIC model to manage irrigated cotton and maize," Agricultural Water Management, Elsevier, vol. 96(9), pages 1323-1331, September.
    6. Geerts, Sam & Raes, Dirk, 2009. "Deficit irrigation as an on-farm strategy to maximize crop water productivity in dry areas," Agricultural Water Management, Elsevier, vol. 96(9), pages 1275-1284, September.
    7. Kresović, Branka & Tapanarova, Angelina & Tomić, Zorica & Životić, Ljubomir & Vujović, Dragan & Sredojević, Zorica & Gajić, Boško, 2016. "Grain yield and water use efficiency of maize as influenced by different irrigation regimes through sprinkler irrigation under temperate climate," Agricultural Water Management, Elsevier, vol. 169(C), pages 34-43.
    8. Ko, Jonghan & Piccinni, Giovanni, 2009. "Corn yield responses under crop evapotranspiration-based irrigation management," Agricultural Water Management, Elsevier, vol. 96(5), pages 799-808, May.
    9. Garg, N.K. & Dadhich, Sushmita M., 2014. "A proposed method to determine yield response factors of different crops under deficit irrigation using inverse formulation approach," Agricultural Water Management, Elsevier, vol. 137(C), pages 68-74.
    10. Farré, I. & Faci, J.-M., 2009. "Deficit irrigation in maize for reducing agricultural water use in a Mediterranean environment," Agricultural Water Management, Elsevier, vol. 96(3), pages 383-394, March.
    11. Zwart, Sander J. & Bastiaanssen, Wim G. M., 2004. "Review of measured crop water productivity values for irrigated wheat, rice, cotton and maize," Agricultural Water Management, Elsevier, vol. 69(2), pages 115-133, September.
    12. Gheysari, Mahdi & Mirlatifi, Seyed Majid & Bannayan, Mohammad & Homaee, Mehdi & Hoogenboom, Gerrit, 2009. "Interaction of water and nitrogen on maize grown for silage," Agricultural Water Management, Elsevier, vol. 96(5), pages 809-821, May.
    13. Saseendran, S.A. & Ahuja, Lajpat R. & Ma, Liwang & Trout, Thomas J. & McMaster, Gregory S. & Nielsen, David C. & Ham, Jay M. & Andales, Allan A. & Halvorson, Ardel D. & Chávez, José L. & Fang, Quanxia, 2015. "Developing and normalizing average corn crop water production functions across years and locations using a system model," Agricultural Water Management, Elsevier, vol. 157(C), pages 65-77.
    14. Li, Xiaolin & Tong, Ling & Niu, Jun & Kang, Shaozhong & Du, Taisheng & Li, Sien & Ding, Risheng, 2017. "Spatio-temporal distribution of irrigation water productivity and its driving factors for cereal crops in Hexi Corridor, Northwest China," Agricultural Water Management, Elsevier, vol. 179(C), pages 55-63.
    15. Schreiner-McGraw, Adam P. & Baffaut, Claire, 2023. "Quantifying links between topsoil depth, plant water use, and yield in a rainfed maize field in the U. S. Midwest," Agricultural Water Management, Elsevier, vol. 290(C).
    16. Murley, Cameron B. & Sharma, Sumit & Warren, Jason G. & Arnall, Daryl B. & Raun, William R., 2018. "Yield response of corn and grain sorghum to row offsets on subsurface drip laterals," Agricultural Water Management, Elsevier, vol. 208(C), pages 357-362.
    17. Gholami Zali, Ali & Ehsanzadeh, Parviz, 2018. "Exogenously applied proline as a tool to enhance water use efficiency: Case of fennel," Agricultural Water Management, Elsevier, vol. 197(C), pages 138-146.
    18. Krešo Pandžić & Tanja Likso & Ivan Pejić & Hrvoje Šarčević & Marija Pecina & Ivana Šestak & Davor Tomšić & Nataša Strelec Mahović, 2022. "Application of the self-calibrated palmer drought severity index and standardized precipitation index for estimation of drought impact on maize grain yield in Pannonian part of Croatia," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 113(2), pages 1237-1262, September.
    19. Eric J Belasco & Joseph Cooper & Vincent H Smith, 2020. "The Development of a Weather‐based Crop Disaster Program," American Journal of Agricultural Economics, John Wiley & Sons, vol. 102(1), pages 240-258, January.
    20. Tarkalson, David D. & King, Bradley A. & Bjorneberg, Dave L., 2022. "Maize grain yield and crop water productivity functions in the arid Northwest U.S," Agricultural Water Management, Elsevier, vol. 264(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:96:y:2009:i:9:p:1285-1292. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.