IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v232y2020ics0378377419314611.html
   My bibliography  Save this article

Determination of the water requirement and crop coefficient values of sugarcane by field water balance method in semiarid region

Author

Listed:
  • Dingre, S.K.
  • Gorantiwar, S.D.

Abstract

Sugarcane is a major agro-industrial crop in semiarid regions and generally has high evapotranspiration. Standardized reference evapotranspiration (ET) and location specific crop coefficients are used to estimate crop evapotranspiration. However, precise information on crop coefficient (Kc) is a major impediment in semiarid environments. Field studies were conducted during two seasons of 2015 and 2016 in clay soils to determine crop evapotranspiration and crop coefficients (Kc) of sugarcane for semiarid India.The experimental area was cultivated with irrigation applied at 7–10 days interval by a drip irrigation system in addition to rainfall and the irrigation scheduling was based on field water balance approach. The crop evapotranspiration was determined by field water balance, reference evapotranspiration (ETo) by the Penman-Monteith approach while crop coefficient were computed through the standard FAO-56 methodology.On an annual basis, the total reference evapotranspiration (ETo) and crop evapotranspiration (ETc) were 1318−1426 mm and 1291−1388 mm respectively. Two years average sugarcane crop evapotranspiration estimated by field water balance method was 1339 mm year−1. The irrigation water requirement andeffective rainfall was 991 mm year-1 and 424 mm year-1 respectively. Two years results showed that there was a notable symmetry between Kc obtained from field water balance measurements and FAO-56 reported Kc. The determined Kc values for tillering, grand growth and maturity stages of sugarcane were 0.70, 1.20 and 0.78, respectively. The Kc values were found 25.5 %, 4 % and 20.4 % less during the tillering, grand growth and maturity stage respectively over the FAO-56 Kc values. The 2nd order polynomial equation was fitted with crop coefficient as the dependent variables and ratio of days after transplanting to total crop period as the independent variable. The daily values of Kc from equation is very useful towards efficient management of irrigation water in terms of making a Decision Support System, Soil Moisture based Crop Yield Modeling, Crop Water Requirement based Computer programme or Mobile Application, Automation of irrigation system in the major sugarcane growing countries of semi arid regions.

Suggested Citation

  • Dingre, S.K. & Gorantiwar, S.D., 2020. "Determination of the water requirement and crop coefficient values of sugarcane by field water balance method in semiarid region," Agricultural Water Management, Elsevier, vol. 232(C).
  • Handle: RePEc:eee:agiwat:v:232:y:2020:i:c:s0378377419314611
    DOI: 10.1016/j.agwat.2020.106042
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377419314611
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2020.106042?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wiedenfeld, Bob, 2004. "Scheduling water application on drip irrigated sugarcane," Agricultural Water Management, Elsevier, vol. 64(2), pages 169-181, January.
    2. Singh, P. N. & Mohan, S. C., 1994. "Water use and yield response of sugarcane under different irrigation schedules and nitrogen levels in a subtropical region," Agricultural Water Management, Elsevier, vol. 26(4), pages 253-264, December.
    3. Wiedenfeld, Robert P., 2000. "Water stress during different sugarcane growth periods on yield and response to N fertilization," Agricultural Water Management, Elsevier, vol. 43(2), pages 173-182, March.
    4. Raghuwanshi, N. S. & Wallender, W. W., 1998. "Optimization of furrow irrigation schedules, designs and net return to water," Agricultural Water Management, Elsevier, vol. 35(3), pages 209-226, January.
    5. Omary, Mohammad & Izuno, Forrest T., 1995. "Evaluation of sugarcane evapotranspiration from water table data in the everglades agricultural area," Agricultural Water Management, Elsevier, vol. 27(3-4), pages 309-319, July.
    6. Chabot, Rosanne & Bouarfa, Sami & Zimmer, Daniel & Chaumont, Cedric & Moreau, Sylvain, 2005. "Evaluation of the sap flow determined with a heat balance method to measure the transpiration of a sugarcane canopy," Agricultural Water Management, Elsevier, vol. 75(1), pages 10-24, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hiloidhari, Moonmoon & Vijay, Vandit & Banerjee, Rangan & Baruah, D.C. & Rao, Anand B., 2021. "Energy-carbon-water footprint of sugarcane bioenergy: A district-level life cycle assessment in the state of Maharashtra, India," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    2. Gu, Nan & Zhang, Jianyun & Wang, Guoqing & Liu, Cuishan & Wang, Zhenlong & Lü, Haishen, 2022. "An atmospheric and soil thermal-based wheat crop coefficient method using additive crop growth models," Agricultural Water Management, Elsevier, vol. 269(C).
    3. Mazarei, Reza & Soltani Mohammadi, Amir & Ebrahimian, Hamed & Naseri, Abd Ali, 2021. "Temporal variability of infiltration and roughness coefficients and furrow irrigation performance under different inflow rates," Agricultural Water Management, Elsevier, vol. 245(C).
    4. Zhang, Qingsong & Sun, Jiahao & Zhang, Guangxin & Liu, Xuemei & Wu, Yanfeng & Sun, Jingxuan & Hu, Boting, 2023. "Spatiotemporal dynamics of water supply–demand patterns under large-scale paddy expansion: Implications for regional sustainable water resource management," Agricultural Water Management, Elsevier, vol. 285(C).
    5. Liu, Yanqi & Lin, Yifan & Huo, Zailin & Zhang, Chenglong & Wang, Chaozi & Xue, Jingyuan & Huang, Guanhua, 2022. "Spatio-temporal variation of irrigation water requirements for wheat and maize in the Yellow River Basin, China, 1974–2017," Agricultural Water Management, Elsevier, vol. 262(C).
    6. Pereira, L.S. & Paredes, P. & Hunsaker, D.J. & López-Urrea, R. & Mohammadi Shad, Z., 2021. "Standard single and basal crop coefficients for field crops. Updates and advances to the FAO56 crop water requirements method," Agricultural Water Management, Elsevier, vol. 243(C).
    7. Suelen Costa Faria Martins & Marcos Alex Santos & Gustavo Bastos Lyra & José Leonaldo Souza & Guilherme Bastos Lyra & Iêdo Teodoro & Fábio Freitas Ferreira & Ricardo Araújo Ferreira Júnior & Alexsandr, 2022. "Actual Evapotranspiration for Sugarcane Based on Bowen Ratio-Energy Balance and Soil Water Balance Models with Optimized Crop Coefficients," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(12), pages 4557-4574, September.
    8. Lucas Eduardo Oliveira Aparecido & Kamila Cunha Meneses & Pedro Antonio Lorençone & João Antonio Lorençone & Jose Reinaldo da Silva Cabral de Moraes & Glauco Souza Rolim, 2023. "Climate classification by Thornthwaite (1948) humidity index in future scenarios for Maranhão State, Brazil," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(1), pages 855-878, January.
    9. Dingre, S.K. & Gorantiwar, S.D., 2021. "Soil moisture based deficit irrigation management for sugarcane (Saccharum officinarum L.) in semiarid environment," Agricultural Water Management, Elsevier, vol. 245(C).
    10. Guojun Zheng & Shengfeng Long & Guanghu Zhu & Qinlong Wang & Ting Luo & Hairong Huang & Lu Liu & Hui Fang & Pengcheng Ma & Yaoyang Shen & Zeping Wang, 2024. "Spatiotemporal Dynamic Relationship of Meteorological Factors and Sugar Content of Sugarcane by Vector Autoregression Model," Agriculture, MDPI, vol. 14(11), pages 1-19, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dingre, S.K. & Gorantiwar, S.D., 2021. "Soil moisture based deficit irrigation management for sugarcane (Saccharum officinarum L.) in semiarid environment," Agricultural Water Management, Elsevier, vol. 245(C).
    2. Alamilla-Magaña, J.C. & Carrillo-Ávila, E. & Obrador-Olán, J.J. & Landeros-Sánchez, C. & Vera-Lopez, J. & Juárez-López, J.F., 2016. "Soil moisture tension effect on sugar cane growth and yield," Agricultural Water Management, Elsevier, vol. 177(C), pages 264-273.
    3. Singh, P.N. & Shukla, S.K. & Bhatnagar, V.K., 2007. "Optimizing soil moisture regime to increase water use efficiency of sugarcane (Saccharum spp. hybrid complex) in subtropical India," Agricultural Water Management, Elsevier, vol. 90(1-2), pages 95-100, May.
    4. Chen, Dianyu & Wang, Youke & Liu, Shouyang & Wei, Xinguang & Wang, Xing, 2014. "Response of relative sap flow to meteorological factors under different soil moisture conditions in rainfed jujube (Ziziphus jujuba Mill.) plantations in semiarid Northwest China," Agricultural Water Management, Elsevier, vol. 136(C), pages 23-33.
    5. Migliaccio, Kati W. & Schaffer, Bruce & Crane, Jonathan H. & Davies, Frederick S., 2010. "Plant response to evapotranspiration and soil water sensor irrigation scheduling methods for papaya production in south Florida," Agricultural Water Management, Elsevier, vol. 97(10), pages 1452-1460, October.
    6. Singels, A. & Paraskevopoulos, A.L. & Mashabela, M.L., 2019. "Farm level decision support for sugarcane irrigation management during drought," Agricultural Water Management, Elsevier, vol. 222(C), pages 274-285.
    7. Cai, Fu & Zhang, Yushu & Mi, Na & Ming, Huiqing & Zhang, Shujie & Zhang, Hui & Zhao, Xianli, 2020. "Maize (Zea mays L.) physiological responses to drought and rewatering, and the associations with water stress degree," Agricultural Water Management, Elsevier, vol. 241(C).
    8. Qin, Nianxiu & Lu, Qinqin & Fu, Guobin & Wang, Junneng & Fei, Kai & Gao, Liang, 2023. "Assessing the drought impact on sugarcane yield based on crop water requirements and standardized precipitation evapotranspiration index," Agricultural Water Management, Elsevier, vol. 275(C).
    9. Huang, Yilong & Chen, Liding & Fu, Bojie & Huang, Zhilin & Gong, Jie, 2005. "The wheat yields and water-use efficiency in the Loess Plateau: straw mulch and irrigation effects," Agricultural Water Management, Elsevier, vol. 72(3), pages 209-222, April.
    10. Chopart, J.L. & Mezino, M. & Aure, F. & Le Mezo, L. & Mete, M. & Vauclin, M., 2007. "OSIRI: A simple decision-making tool for monitoring irrigation of small farms in heterogeneous environments," Agricultural Water Management, Elsevier, vol. 87(2), pages 128-138, January.
    11. Tari, Ali Fuat, 2016. "The effects of different deficit irrigation strategies on yield, quality, and water-use efficiencies of wheat under semi-arid conditions," Agricultural Water Management, Elsevier, vol. 167(C), pages 1-10.
    12. Olutobi Adeyemi & Ivan Grove & Sven Peets & Tomas Norton, 2017. "Advanced Monitoring and Management Systems for Improving Sustainability in Precision Irrigation," Sustainability, MDPI, vol. 9(3), pages 1-29, February.
    13. Rivera-Hernández, B. & Carrillo-Ávila, E. & Obrador-Olán, J.J. & Juárez-López, J.F. & Aceves-Navarro, L.A., 2010. "Morphological quality of sweet corn (Zea mays L.) ears as response to soil moisture tension and phosphate fertilization in Campeche, Mexico," Agricultural Water Management, Elsevier, vol. 97(9), pages 1365-1374, September.
    14. John E. Erickson & Arkorn Soikaew & Lynn E. Sollenberger & Jerry M. Bennett, 2012. "Water Use and Water-Use Efficiency of Three Perennial Bioenergy Grass Crops in Florida," Agriculture, MDPI, vol. 2(4), pages 1-14, October.
    15. Momii, Kazuro & Hiyama, Hiroki & Takeuchi, Shinichi, 2021. "Field sugarcane transpiration based on sap flow measurements and root water uptake simulations: Case study on Tanegashima Island, Japan," Agricultural Water Management, Elsevier, vol. 250(C).
    16. Hou, Lizhu & Wenninger, Jochen & Shen, Jiangen & Zhou, Yangxiao & Bao, Han & Liu, Haijun, 2014. "Assessing crop coefficients for Zea mays in the semi-arid Hailiutu River catchment, northwest China," Agricultural Water Management, Elsevier, vol. 140(C), pages 37-47.
    17. Watanabe, Kota & Yamamoto, Takashi & Yamada, Takashi & Sakuratani, Tetsuo & Nawata, Eiji & Noichana, Chairat & Sributta, Akadet & Higuchi, Hirokazu, 2004. "Changes in seasonal evapotranspiration, soil water content, and crop coefficients in sugarcane, cassava, and maize fields in Northeast Thailand," Agricultural Water Management, Elsevier, vol. 67(2), pages 133-143, June.
    18. Huang, Mingbin & Dang, Tinghui & Gallichand, Jacques & Goulet, Monique, 2003. "Effect of increased fertilizer applications to wheat crop on soil-water depletion in the Loess Plateau, China," Agricultural Water Management, Elsevier, vol. 58(3), pages 267-278, February.
    19. Hurst, Caecelia A. & Thorburn, Peter J. & Lockington, David & Bristow, Keith L., 2004. "Sugarcane water use from shallow water tables: implications for improving irrigation water use efficiency," Agricultural Water Management, Elsevier, vol. 65(1), pages 1-19, February.
    20. Wang, Dan & Kang, Yaohu & Wan, Shuqin, 2007. "Effect of soil matric potential on tomato yield and water use under drip irrigation condition," Agricultural Water Management, Elsevier, vol. 87(2), pages 180-186, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:232:y:2020:i:c:s0378377419314611. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.