IDEAS home Printed from https://ideas.repec.org/a/eee/agisys/v154y2017icp145-156.html
   My bibliography  Save this article

Environmental impact trade-offs in diet formulation for broiler production systems in the UK and USA

Author

Listed:
  • Tallentire, C.W.
  • Mackenzie, S.G.
  • Kyriazakis, I.

Abstract

The environmental impacts associated with broiler production arise mainly from the production and consumption of feed. The aim was to develop a tool for formulating broiler diets designed to target and reduce individually specific environmental impact categories in two contrasting regions, the UK and USA. Using linear programming, least cost broiler diets were formulated for each region, using the most common genotype specific to each region. The environmental impact of the systems was defined using 6 categories calculated through a Life Cycle Assessment (LCA) method: global warming potential (GWP), fresh water eutrophication potential (FWEP), marine eutrophication potential (MEP), terrestrial acidification potential (TAP), non-renewable energy use (NREU) and agricultural land use (ALU). Diets were then formulated for each region to minimise each impact category, without compromising bird performance. The diets formulated for environmental impact objectives increased their cost in most cases by between 20 and 30% (the cost increase limit), with the exception of the least GWP (+16%) and the least NREU (+4%) diets in the UK, and the least TAP diet in the USA (+14%). The degree of flexibility to reduce simultaneously several environmental impact categories in the UK and the USA differed due to the different feed ingredients available to each region. The results suggested there was potential to minimise several impact categories simultaneously by reducing the impact of one impact category compared to least cost, through diet formulation in the UK; this was shown to a greater and lesser extent in the least FWEP and the least NREU diet formulations respectively. In the USA, there was no way to minimise one impact category through diet formulation without increasing other impact categories caused by the system. Employing a multi-criteria approach to diet formulation methodologies, where environmental impact as well as economic implications are considered, will form an important pillar in broader efforts to improve the sustainability of animal production.

Suggested Citation

  • Tallentire, C.W. & Mackenzie, S.G. & Kyriazakis, I., 2017. "Environmental impact trade-offs in diet formulation for broiler production systems in the UK and USA," Agricultural Systems, Elsevier, vol. 154(C), pages 145-156.
  • Handle: RePEc:eee:agisys:v:154:y:2017:i:c:p:145-156
    DOI: 10.1016/j.agsy.2017.03.018
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0308521X16306047
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agsy.2017.03.018?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Leinonen, Ilkka & Williams, Adrian G. & Waller, Anthony H. & Kyriazakis, Ilias, 2013. "Comparing the environmental impacts of alternative protein crops in poultry diets: The consequences of uncertainty," Agricultural Systems, Elsevier, vol. 121(C), pages 33-42.
    2. MacDonald, James M., 2008. "The Economic Organization of U.S. Broiler Production," Economic Information Bulletin 58627, United States Department of Agriculture, Economic Research Service.
    3. Pelletier, N., 2008. "Environmental performance in the US broiler poultry sector: Life cycle energy use and greenhouse gas, ozone depleting, acidifying and eutrophying emissions," Agricultural Systems, Elsevier, vol. 98(2), pages 67-73, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. M. Elizabeth E. Ball & Sam Smyth & Violet E. Beattie & Kelvin J. McCracken & Ursula McCormack & Ramon Muns & Fred J. Gordon & Raymond Bradford & L. Alanna Reid & Elizabeth Magowan, 2022. "The Environmental Impact of Lowering Dietary Crude Protein in Finishing Pig Diets—The Effect on Ammonia, Odour and Slurry Production," Sustainability, MDPI, vol. 14(19), pages 1-13, September.
    2. Ottosen, Mathias & Mackenzie, Stephen G. & Filipe, Joao A.N. & Misiura, Maciek M. & Kyriazakis, Ilias, 2021. "Changes in the environmental impacts of pig production systems in Great Britain over the last 18 years," Agricultural Systems, Elsevier, vol. 189(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Putman, Ben & Thoma, Greg & Burek, Jasmina & Matlock, Marty, 2017. "A retrospective analysis of the United States poultry industry: 1965 compared with 2010," Agricultural Systems, Elsevier, vol. 157(C), pages 107-117.
    2. MacDonald, James M. & Key, Nigel D., 2012. "Market Power in Poultry Production Contracting? Evidence from a Farm Survey," Journal of Agricultural and Applied Economics, Southern Agricultural Economics Association, vol. 44(4), pages 1-14, November.
    3. Pelletier, N. & Lammers, P. & Stender, D. & Pirog, R., 2010. "Life cycle assessment of high- and low-profitability commodity and deep-bedded niche swine production systems in the Upper Midwestern United States," Agricultural Systems, Elsevier, vol. 103(9), pages 599-608, November.
    4. Andrew Manale & Cynthia Morgan & Glenn Sheriff & David Simpson, 2011. "Offset markets for nutrient and sediment discharges in the Chesapeake Bay Watershed: Policy tradeoffs and potential steps forward," NCEE Working Paper Series 201105, National Center for Environmental Economics, U.S. Environmental Protection Agency, revised Aug 2011.
    5. Devkota, Nirmala & Paudel, Krishna P. & Parajuli, Shanta, 2009. "Broiler Producers’ Willingness To Pay To Manage Nutrient Pollution," 2009 Annual Meeting, January 31-February 3, 2009, Atlanta, Georgia 46825, Southern Agricultural Economics Association.
    6. Niero, Monia & Ingvordsen, Cathrine H. & Peltonen-Sainio, Pirjo & Jalli, Marja & Lyngkjær, Michael F. & Hauschild, Michael Z. & Jørgensen, Rikke B., 2015. "Eco-efficient production of spring barley in a changed climate: A Life Cycle Assessment including primary data from future climate scenarios," Agricultural Systems, Elsevier, vol. 136(C), pages 46-60.
    7. Marco Remondino & Luigi Valdenassi, 2018. "Different Uses of Ozone: Environmental and Corporate Sustainability. Literature Review and Case Study," Sustainability, MDPI, vol. 10(12), pages 1-18, December.
    8. White, Robin R., 2016. "Increasing energy and protein use efficiency improves opportunities to decrease land use, water use, and greenhouse gas emissions from dairy production," Agricultural Systems, Elsevier, vol. 146(C), pages 20-29.
    9. Yi Liang & Michael Janorschke & Chad E. Hayes, 2022. "Low-Cost Solar Collectors to Pre-Heat Ventilation Air in Broiler Houses," Energies, MDPI, vol. 15(4), pages 1-9, February.
    10. Bartłomiej Bajan & Joanna Łukasiewicz & Agnieszka Poczta-Wajda & Walenty Poczta, 2021. "Edible Energy Production and Energy Return on Investment—Long-Term Analysis of Global Changes," Energies, MDPI, vol. 14(4), pages 1-16, February.
    11. Nigel Key & Gregoire Tallard, 2012. "Mitigating methane emissions from livestock: a global analysis of sectoral policies," Climatic Change, Springer, vol. 112(2), pages 387-414, May.
    12. Baines, Joseph, 2017. "Accumulating through Food Crisis? Farmers, Commodity Traders and the Distributional Politics of Financialization," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 24(3), pages 497-537.
    13. Bolotova, Yuliya V., 2024. "Production Contracts and Buyer Market Power in the U.S. Broiler Chicken Industry," 2024 Annual Meeting, July 28-30, New Orleans, LA 344127, Agricultural and Applied Economics Association.
    14. Eva Polyak & Zita Breitenbach & Eszter Frank & Olivia Mate & Maria Figler & Dorottya Zsalig & Klara Simon & Mate Szijarto & Zoltan Szabo, 2023. "Food and Sustainability: Is It a Matter of Choice?," Sustainability, MDPI, vol. 15(9), pages 1-22, April.
    15. Mainali, Brijesh & Emran, Saad Been & Silveira, Semida, 2017. "Greenhouse gas mitigation using poultry litter management techniques in Bangladesh," Energy, Elsevier, vol. 127(C), pages 155-166.
    16. Alejandro Fontana & Ignacio De los Ríos Carmenado & Johan Villanueva-Penedo & José Ulloa-Salazar & Denisse Santander-Peralta, 2018. "Strategy for the Sustainability of a Food Production System for the Prosperity of Low-Income Populations in an Emerging Country: Twenty Years of Experience of the Peruvian Poultry Association," Sustainability, MDPI, vol. 10(11), pages 1-18, November.
    17. Davids, T. & Meyer, F.H., 2017. "Price formation and competitiveness of the South African broiler industry in the global context," Agrekon, Agricultural Economics Association of South Africa (AEASA), vol. 56(2), March.
    18. Ma, Qiuzhuo & Paudel, Krishna P. & Cui, Luqi, 2018. "A multi-objective optimization problem for using poultry litter in electricity production," Applied Energy, Elsevier, vol. 228(C), pages 1220-1242.
    19. Foivos Zisis & Elisavet Giamouri & Christina Mitsiopoulou & Christos Christodoulou & Charalampos Kamilaris & Alexandros Mavrommatis & Athanasios C. Pappas & Eleni Tsiplakou, 2023. "An Overview of Poultry Greenhouse Gas Emissions in the Mediterranean Area," Sustainability, MDPI, vol. 15(3), pages 1-19, January.
    20. Hoffman, Eric & Cavigelli, Michel A. & Camargo, Gustavo & Ryan, Matthew & Ackroyd, Victoria J. & Richard, Tom L. & Mirsky, Steven, 2018. "Energy use and greenhouse gas emissions in organic and conventional grain crop production: Accounting for nutrient inflows," Agricultural Systems, Elsevier, vol. 162(C), pages 89-96.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agisys:v:154:y:2017:i:c:p:145-156. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agsy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.