IDEAS home Printed from https://ideas.repec.org/a/eee/agisys/v136y2015icp46-60.html
   My bibliography  Save this article

Eco-efficient production of spring barley in a changed climate: A Life Cycle Assessment including primary data from future climate scenarios

Author

Listed:
  • Niero, Monia
  • Ingvordsen, Cathrine H.
  • Peltonen-Sainio, Pirjo
  • Jalli, Marja
  • Lyngkjær, Michael F.
  • Hauschild, Michael Z.
  • Jørgensen, Rikke B.

Abstract

The paper has two main objectives: (i) to assess the eco-efficiency of spring barley cultivation for malting in Denmark in a future changed climate (700 ppm [CO2] and +5 °C) through Life Cycle Assessment (LCA) and (ii) to compare alternative future cultivation scenarios, both excluding and including earlier sowing and cultivar selection as measures of adaptation to a changed climate. A baseline scenario describing the current spring barley cultivation in Denmark was defined, and the expected main deviations were identified (differences in pesticide treatment index, modifications in nitrate leaching and change in crop yield). The main input data originate from experiments, where spring barley cultivars were cultivated in a climate phytotron under controlled and manipulated treatments. Effects of changed climate on both crop productivity and crop quality were represented, as well as impacts of predicted extreme events, simulated through a long heat-wave. LCA results showed that the changed climatic conditions will likely increase the negative impacts on the environment from Danish spring barley cultivation, since all environmental impact categories experienced increased impact for all investigated scenarios, except under the very optimistic assumption that the pace of yield improvement by breeding in the future will be the same as it was in the last decades. The main driver of the increased environmental impact was identified as the reduction in crop yield. Therefore, potential adaptation strategies should mainly focus on maintaining or improving crop productivity. The LCA also showed that selection of proper cultivars for future climate conditions including the challenge from extreme events is one of the most effective ways to reduce future environmental impacts of spring barley. Finally, if yield measurements are based on relative protein content, the negative effects of the future climate seem to be reduced.

Suggested Citation

  • Niero, Monia & Ingvordsen, Cathrine H. & Peltonen-Sainio, Pirjo & Jalli, Marja & Lyngkjær, Michael F. & Hauschild, Michael Z. & Jørgensen, Rikke B., 2015. "Eco-efficient production of spring barley in a changed climate: A Life Cycle Assessment including primary data from future climate scenarios," Agricultural Systems, Elsevier, vol. 136(C), pages 46-60.
  • Handle: RePEc:eee:agisys:v:136:y:2015:i:c:p:46-60
    DOI: 10.1016/j.agsy.2015.02.007
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0308521X15000232
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agsy.2015.02.007?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. F. Fallahpour & A. Aminghafouri & A. Ghalegolab Behbahani & M. Bannayan, 2012. "The environmental impact assessment of wheat and barley production by using life cycle assessment (LCA) methodology," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 14(6), pages 979-992, December.
    2. Nemecek, Thomas & Dubois, David & Huguenin-Elie, Olivier & Gaillard, Gérard, 2011. "Life cycle assessment of Swiss farming systems: I. Integrated and organic farming," Agricultural Systems, Elsevier, vol. 104(3), pages 217-232, March.
    3. Korsaeth, Audun & Henriksen, Trond Maukon & Roer, Anne-Grete & Hammer Strømman, Anders, 2014. "Effects of regional variation in climate and SOC decay on global warming potential and eutrophication attributable to cereal production in Norway," Agricultural Systems, Elsevier, vol. 127(C), pages 9-18.
    4. Leinonen, Ilkka & Williams, Adrian G. & Waller, Anthony H. & Kyriazakis, Ilias, 2013. "Comparing the environmental impacts of alternative protein crops in poultry diets: The consequences of uncertainty," Agricultural Systems, Elsevier, vol. 121(C), pages 33-42.
    5. Jonathan A. Foley & Navin Ramankutty & Kate A. Brauman & Emily S. Cassidy & James S. Gerber & Matt Johnston & Nathaniel D. Mueller & Christine O’Connell & Deepak K. Ray & Paul C. West & Christian Balz, 2011. "Solutions for a cultivated planet," Nature, Nature, vol. 478(7369), pages 337-342, October.
    6. Nemecek, Thomas & Huguenin-Elie, Olivier & Dubois, David & Gaillard, Gérard & Schaller, Britta & Chervet, Andreas, 2011. "Life cycle assessment of Swiss farming systems: II. Extensive and intensive production," Agricultural Systems, Elsevier, vol. 104(3), pages 233-245, March.
    7. Tendall, Danielle M. & Gaillard, Gérard, 2015. "Environmental consequences of adaptation to climate change in Swiss agriculture: An analysis at farm level," Agricultural Systems, Elsevier, vol. 132(C), pages 40-51.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zahra Payandeh & Ahmad Jahanbakhshi & Tarahom Mesri-Gundoshmian & Sean Clark, 2021. "Improving Energy Efficiency of Barley Production Using Joint Data Envelopment Analysis (DEA) and Life Cycle Assessment (LCA): Evaluation of Greenhouse Gas Emissions and Optimization Approach," Sustainability, MDPI, vol. 13(11), pages 1-16, May.
    2. Prechsl, Ulrich E. & Wittwer, Raphael & van der Heijden, Marcel G.A. & Lüscher, Gisela & Jeanneret, Philippe & Nemecek, Thomas, 2017. "Assessing the environmental impacts of cropping systems and cover crops: Life cycle assessment of FAST, a long-term arable farming field experiment," Agricultural Systems, Elsevier, vol. 157(C), pages 39-50.
    3. Nur Sunar & Erica Plambeck, 2016. "Allocating Emissions Among Co-Products: Implications for Procurement and Climate Policy," Manufacturing & Service Operations Management, INFORMS, vol. 18(3), pages 414-428, July.
    4. El Chami, D. & Daccache, A., 2015. "Assessing sustainability of winter wheat production under climate change scenarios in a humid climate — An integrated modelling framework," Agricultural Systems, Elsevier, vol. 140(C), pages 19-25.
    5. Geoffrey Guest & Jieying Zhang & Omran Maadani & Hamidreza Shirkhani, 2020. "Incorporating the impacts of climate change into infrastructure life cycle assessments: A case study of pavement service life performance," Journal of Industrial Ecology, Yale University, vol. 24(2), pages 356-368, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Vogel, Everton & Martinelli, Gabrielli & Artuzo, Felipe Dalzotto, 2021. "Environmental and economic performance of paddy field-based crop-livestock systems in Southern Brazil," Agricultural Systems, Elsevier, vol. 190(C).
    2. Pradeleix, L. & Roux, P. & Bouarfa, S. & Bellon-Maurel, V., 2023. "Multilevel life cycle assessment to evaluate prospective agricultural development scenarios in a semi-arid irrigated region of Tunisia," Agricultural Systems, Elsevier, vol. 212(C).
    3. Houshyar, Ehsan & Grundmann, Philipp, 2017. "Environmental impacts of energy use in wheat tillage systems: A comparative life cycle assessment (LCA) study in Iran," Energy, Elsevier, vol. 122(C), pages 11-24.
    4. El Chami, D. & Daccache, A., 2015. "Assessing sustainability of winter wheat production under climate change scenarios in a humid climate — An integrated modelling framework," Agricultural Systems, Elsevier, vol. 140(C), pages 19-25.
    5. Rótolo, G.C. & Montico, S. & Francis, C.A. & Ulgiati, S., 2015. "How land allocation and technology innovation affect the sustainability of agriculture in Argentina Pampas: An expanded life cycle analysis," Agricultural Systems, Elsevier, vol. 141(C), pages 79-93.
    6. Seyyed Ali Noorhosseini & Christos A. Damalas, 2018. "RETRACTED: Environmental Impact of Peanut ( Arachis hypogaea L.) Production under Different Levels of Nitrogen Fertilization," Agriculture, MDPI, vol. 8(7), pages 1, July.
    7. Martinelli, Gabrielli do Carmo & Schlindwein, Madalena Maria & Padovan, Milton Parron & Vogel, Everton & Ruviaro, Clandio Favarini, 2019. "Environmental performance of agroforestry systems in the Cerrado biome, Brazil," World Development, Elsevier, vol. 122(C), pages 339-348.
    8. Zahra Payandeh & Ahmad Jahanbakhshi & Tarahom Mesri-Gundoshmian & Sean Clark, 2021. "Improving Energy Efficiency of Barley Production Using Joint Data Envelopment Analysis (DEA) and Life Cycle Assessment (LCA): Evaluation of Greenhouse Gas Emissions and Optimization Approach," Sustainability, MDPI, vol. 13(11), pages 1-16, May.
    9. Behroozeh, Samira & Hayati, Dariush & Karami, Ezatollah, 2022. "Determining and validating criteria to measure energy consumption sustainability in agricultural greenhouses," Technological Forecasting and Social Change, Elsevier, vol. 185(C).
    10. Zhen, Wei & Qin, Quande & Wei, Yi-Ming, 2017. "Spatio-temporal patterns of energy consumption-related GHG emissions in China's crop production systems," Energy Policy, Elsevier, vol. 104(C), pages 274-284.
    11. Annelie Holzkämper, 2017. "Adapting Agricultural Production Systems to Climate Change—What’s the Use of Models?," Agriculture, MDPI, vol. 7(10), pages 1-15, October.
    12. Khoshnevisan, Benyamin & Rafiee, Shahin & Omid, Mahmoud & Yousefi, Marziye & Movahedi, Mehran, 2013. "Modeling of energy consumption and GHG (greenhouse gas) emissions in wheat production in Esfahan province of Iran using artificial neural networks," Energy, Elsevier, vol. 52(C), pages 333-338.
    13. Pradeleix, L. & Roux, P. & Bouarfa, S. & Bellon-Maurel, V., 2022. "Multilevel environmental assessment of regional farming activities with Life Cycle Assessment: Tackling data scarcity and farm diversity with Life Cycle Inventories based on Agrarian System Diagnosis," Agricultural Systems, Elsevier, vol. 196(C).
    14. Liang, Long & Lal, Rattan & Ridoutt, Bradley G. & Zhao, Guishen & Du, Zhangliu & Li, Li & Feng, Dangyang & Wang, Liyuan & Peng, Peng & Hang, Sheng & Wu, Wenliang, 2018. "Multi-indicator assessment of a water-saving agricultural engineering project in North Beijing, China," Agricultural Water Management, Elsevier, vol. 200(C), pages 34-46.
    15. Berti, Marisol & Johnson, Burton & Ripplinger, David & Gesch, Russ & Aponte, Alfredo, 2017. "Environmental impact assessment of double- and relay-cropping with winter camelina in the northern Great Plains, USA," Agricultural Systems, Elsevier, vol. 156(C), pages 1-12.
    16. Liu, Chia-Yi & Hsieh & Chen-Yu, 2023. "How does Organic Agriculture Contribute to Sustainable Development? Organic Agriculture in Taiwan," International Journal on Food System Dynamics, International Center for Management, Communication, and Research, vol. 14(03), September.
    17. Chen, Xuqi & Gao, Zhifeng & Swisher, Marilyn & House, Lisa & Zhao, Xin, 2018. "Eco-labeling in the Fresh Produce Market: Not All Environmentally Friendly Labels Are Equally Valued," Ecological Economics, Elsevier, vol. 154(C), pages 201-210.
    18. Forte, Annachiara & Zucaro, Amalia & De Vico, Gionata & Fierro, Angelo, 2016. "Carbon footprint of heliciculture: A case study from an Italian experimental farm," Agricultural Systems, Elsevier, vol. 142(C), pages 99-111.
    19. Murphy, Fionnuala & Devlin, Ger & McDonnell, Kevin, 2014. "Forest biomass supply chains in Ireland: A life cycle assessment of GHG emissions and primary energy balances," Applied Energy, Elsevier, vol. 116(C), pages 1-8.
    20. Tendall, Danielle M. & Gaillard, Gérard, 2015. "Environmental consequences of adaptation to climate change in Swiss agriculture: An analysis at farm level," Agricultural Systems, Elsevier, vol. 132(C), pages 40-51.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agisys:v:136:y:2015:i:c:p:46-60. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agsy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.