IDEAS home Printed from https://ideas.repec.org/a/caa/jnlhor/v50y2023i1id11-2022-hortsci.html
   My bibliography  Save this article

Effects of saline water and N levels on eggplant (Solanum melongena L.) fruit yield, water productivity, and nitrogen use efficiency by drip and surface flood irrigation

Author

Listed:
  • Seema

    (Department of Soil Science, CCS Haryana Agricultural University, Hisar, India)

  • Rita Dahiya

    (Department of Physics, CCS Haryana Agricultural University, Hisar, India)

  • Ram Prakash

    (Department of Soil Science, CCS Haryana Agricultural University, Hisar, India)

  • Vijay Pal Singh Panghal

    (Department of Vegetable Science, CCS Haryana Agricultural University, Hisar, India)

  • Manoj Kumar Gora

    (Department of Agronomy, CCS Haryana Agricultural University, Hisar, India)

Abstract

Due to a scarcity of freshwater resources, agriculture is dependent on the use of poor quality water for irrigation in arid and semi-arid regions. Hence, the effective use of poor quality water requires pioneering water management and nitrogen fertilizer practices for increasing yield and resource efficiency. This study aimed to investigate the effect of saline water levels, nitrogen fertilizer, and irrigation methods on eggplant yield, water productivity, NPK uptake, and nitrogen use efficiency. The experiment was conducted in 2019 and 2020 under drip (IM1) and surface flood irrigation (IM2). The treatments included three saline water levels i.e. canal water (SW1), ECiw=2.5 dS/m (SW2), and ECiw=5.0 dS/m (SW3) along with the three nitrogen levels of 75% (N1), 100% (N2), and 125% (N3) of the recommended dose of nitrogen. Application of saline water using IM1 reduced the ECe by 41.8% (SW2) and 34% (SW3) over IM2. The fruit yield, water productivity (WP), NPK uptake, and nitrogen use efficiency (NUE) was increased by 22%, 127.6%, 39.8%, 16.6%, 11.8%, and 23.8% under IM1 over IM2, respectively. A high saline water level under IM2 can cause more reduction in fruit yield, NPK uptake, and water use. Applying saline water through IM1 improves fruit yield, WP, and NUE by 13-32.8%, 104.1-147.3%, and 10.5-35.2% as compared to IM2. We found that saline water and N applied by drip improved eggplant yield, water productivity, and NPK uptake. It is concluded that irrigation water and nitrogen fertilizer consumption are optimized when saline water is applied through drip irrigation.

Suggested Citation

  • Seema & Rita Dahiya & Ram Prakash & Vijay Pal Singh Panghal & Manoj Kumar Gora, 2023. "Effects of saline water and N levels on eggplant (Solanum melongena L.) fruit yield, water productivity, and nitrogen use efficiency by drip and surface flood irrigation," Horticultural Science, Czech Academy of Agricultural Sciences, vol. 50(1), pages 32-44.
  • Handle: RePEc:caa:jnlhor:v:50:y:2023:i:1:id:11-2022-hortsci
    DOI: 10.17221/11/2022-HORTSCI
    as

    Download full text from publisher

    File URL: http://hortsci.agriculturejournals.cz/doi/10.17221/11/2022-HORTSCI.html
    Download Restriction: free of charge

    File URL: http://hortsci.agriculturejournals.cz/doi/10.17221/11/2022-HORTSCI.pdf
    Download Restriction: free of charge

    File URL: https://libkey.io/10.17221/11/2022-HORTSCI?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gianluca Caruso & Robert Pokluda & Agnieszka Sękara & Andrzej Kalisz & Aleš Jezdinský & Tomáš Kopta & Aneta Grabowska, 2017. "Agricultural practices, biology and quality of eggplant cultivated in Central Europe. A review," Horticultural Science, Czech Academy of Agricultural Sciences, vol. 44(4), pages 201-212.
    2. Carole Dalin & Yoshihide Wada & Thomas Kastner & Michael J. Puma, 2017. "Groundwater depletion embedded in international food trade," Nature, Nature, vol. 543(7647), pages 700-704, March.
    3. Ozbahce, Aynur & Tari, Ali Fuat, 2010. "Effects of different emitter space and water stress on yield and quality of processing tomato under semi-arid climate conditions," Agricultural Water Management, Elsevier, vol. 97(9), pages 1405-1410, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ehsan Qasemipour & Farhad Tarahomi & Markus Pahlow & Seyed Saeed Malek Sadati & Ali Abbasi, 2020. "Assessment of Virtual Water Flows in Iran Using a Multi-Regional Input-Output Analysis," Sustainability, MDPI, vol. 12(18), pages 1-18, September.
    2. Caldera, Upeksha & Breyer, Christian, 2020. "Strengthening the global water supply through a decarbonised global desalination sector and improved irrigation systems," Energy, Elsevier, vol. 200(C).
    3. Jayanta Das & A. T. M. Sakiur Rahman & Tapash Mandal & Piu Saha, 2021. "Exploring driving forces of large-scale unsustainable groundwater development for irrigation in lower Ganga River basin in India," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(5), pages 7289-7309, May.
    4. Rulli, Maria Cristina & Casirati, Stefano & Dell’Angelo, Jampel & Davis, Kyle Frankel & Passera, Corrado & D’Odorico, Paolo, 2019. "Interdependencies and telecoupling of oil palm expansion at the expense of Indonesian rainforest," Renewable and Sustainable Energy Reviews, Elsevier, vol. 105(C), pages 499-512.
    5. Xiukang Wang, 2022. "Managing Land Carrying Capacity: Key to Achieving Sustainable Production Systems for Food Security," Land, MDPI, vol. 11(4), pages 1-21, March.
    6. Li, Hao & Hou, Xuemin & Bertin, Nadia & Ding, Risheng & Du, Taisheng, 2023. "Quantitative responses of tomato yield, fruit quality and water use efficiency to soil salinity under different water regimes in Northwest China," Agricultural Water Management, Elsevier, vol. 277(C).
    7. Anna Herzberger & Min Gon Chung & Kelly Kapsar & Kenneth A. Frank & Jianguo Liu, 2019. "Telecoupled Food Trade Affects Pericoupled Trade and Intracoupled Production," Sustainability, MDPI, vol. 11(10), pages 1-15, May.
    8. Distefano, Tiziano & Chiarotti, Guido & Laio, Francesco & Ridolfi, Luca, 2019. "Spatial Distribution of the International Food Prices: Unexpected Heterogeneity and Randomness," Ecological Economics, Elsevier, vol. 159(C), pages 122-132.
    9. Zhang, Huimeng & Xiong, Yunwu & Huang, Guanhua & Xu, Xu & Huang, Quanzhong, 2017. "Effects of water stress on processing tomatoes yield, quality and water use efficiency with plastic mulched drip irrigation in sandy soil of the Hetao Irrigation District," Agricultural Water Management, Elsevier, vol. 179(C), pages 205-214.
    10. Han, Feng & Zheng, Yi & Zhang, Ling & Xiong, Rui & Hu, Zhaoping & Tian, Yong & Li, Xin, 2023. "Simulating drip irrigation in large-scale and high-resolution ecohydrological models: From emitters to the basin," Agricultural Water Management, Elsevier, vol. 289(C).
    11. Boxin Wang & Bin Wang & Xiaobing Zhao & Jiao Li & Dasheng Zhang, 2023. "Study and Evaluation of Dynamic Carrying Capacity of Groundwater Resources in Hebei Province from 2010 to 2017," Sustainability, MDPI, vol. 15(5), pages 1-15, March.
    12. Merhawi GebreEgziabher & Scott Jasechko & Debra Perrone, 2022. "Widespread and increased drilling of wells into fossil aquifers in the USA," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    13. Shoumitro Chatterjee & Rohit Lamba & Esha D. Zaveri, 2024. "The role of farm subsidies in changing India’s water footprint," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    14. Rasool, Ghulam & Guo, Xiangping & Wang, Zhenchang & Ali, Muhammad Usman & Chen, Sheng & Zhang, Shuxuan & Wu, Qijin & Ullah, Muhammad Saif, 2020. "Coupling fertigation and buried straw layer improves fertilizer use efficiency, fruit yield, and quality of greenhouse tomato," Agricultural Water Management, Elsevier, vol. 239(C).
    15. Hoffmann, Farina & Koellner, Thomas & Kastner, Thomas, 2021. "The micronutrient content of the European Union's agricultural trade," Ecological Economics, Elsevier, vol. 188(C).
    16. Yang, Hui & Du, Taisheng & Mao, Xiaomin & Ding, Risheng & Shukla, Manoj K., 2019. "A comprehensive method of evaluating the impact of drought and salt stress on tomato growth and fruit quality based on EPIC growth model," Agricultural Water Management, Elsevier, vol. 213(C), pages 116-127.
    17. Anapalli, Saseendran S. & Pinnamaneni, Srinivasa R. & Reddy, Krishna N. & Sui, Ruixiu & Singh, Gurbir, 2022. "Investigating soybean (Glycine max L.) responses to irrigation on a large-scale farm in the humid climate of the Mississippi Delta region," Agricultural Water Management, Elsevier, vol. 262(C).
    18. Siderius, Christian & Conway, Declan & Yassine, Mohamed & Murken, Lisa & Lostis, Pierre-Louis & Dalin, Carole, 2020. "Multi-scale analysis of the water-energy-food nexus in the Gulf region," LSE Research Online Documents on Economics 104091, London School of Economics and Political Science, LSE Library.
    19. Mahmoud S. Hashem & Wei Guo & Xuebin Qi & Ping Li, 2022. "Assessing the Effect of Irrigation with Reclaimed Water Using Different Irrigation Techniques on Tomatoes Quality Parameters," Sustainability, MDPI, vol. 14(5), pages 1-19, March.
    20. Chen, Jinliang & Kang, Shaozhong & Du, Taisheng & Guo, Ping & Qiu, Rangjian & Chen, Renqiang & Gu, Feng, 2014. "Modeling relations of tomato yield and fruit quality with water deficit at different growth stages under greenhouse condition," Agricultural Water Management, Elsevier, vol. 146(C), pages 131-148.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:caa:jnlhor:v:50:y:2023:i:1:id:11-2022-hortsci. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Ivo Andrle (email available below). General contact details of provider: https://www.cazv.cz/en/home/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.