Quantitative responses of tomato yield, fruit quality and water use efficiency to soil salinity under different water regimes in Northwest China
Author
Abstract
Suggested Citation
DOI: 10.1016/j.agwat.2022.108134
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Chen, Jinliang & Kang, Shaozhong & Du, Taisheng & Qiu, Rangjian & Guo, Ping & Chen, Renqiang, 2013. "Quantitative response of greenhouse tomato yield and quality to water deficit at different growth stages," Agricultural Water Management, Elsevier, vol. 129(C), pages 152-162.
- Qiu, Yuan & Fan, Yaqiong & Chen, Yang & Hao, Xinmei & Li, Sien & Kang, Shaozhong, 2021. "Response of dry matter and water use efficiency of alfalfa to water and salinity stress in arid and semiarid regions of Northwest China," Agricultural Water Management, Elsevier, vol. 254(C).
- Zhou, Huiping & Chen, Jinliang & Wang, Feng & Li, Xiaojuan & Génard, Michel & Kang, Shaozhong, 2020. "An integrated irrigation strategy for water-saving and quality-improving of cash crops: Theory and practice in China," Agricultural Water Management, Elsevier, vol. 241(C).
- Schiattone, M.I. & Candido, V. & Cantore, V. & Montesano, F.F. & Boari, F., 2017. "Water use and crop performance of two wild rocket genotypes under salinity conditions," Agricultural Water Management, Elsevier, vol. 194(C), pages 214-221.
- Wu, Zhuqing & Fan, Yaqiong & Qiu, Yuan & Hao, Xinmei & Li, Sien & Kang, Shaozhong, 2022. "Response of yield and quality of greenhouse tomatoes to water and salt stresses and biochar addition in Northwest China," Agricultural Water Management, Elsevier, vol. 270(C).
- Ors, Selda & Suarez, Donald L., 2017. "Spinach biomass yield and physiological response to interactive salinity and water stress," Agricultural Water Management, Elsevier, vol. 190(C), pages 31-41.
- Ozbahce, Aynur & Tari, Ali Fuat, 2010. "Effects of different emitter space and water stress on yield and quality of processing tomato under semi-arid climate conditions," Agricultural Water Management, Elsevier, vol. 97(9), pages 1405-1410, September.
- Kang, Jian & Hao, Xinmei & Zhou, Huiping & Ding, Risheng, 2021. "An integrated strategy for improving water use efficiency by understanding physiological mechanisms of crops responding to water deficit: Present and prospect," Agricultural Water Management, Elsevier, vol. 255(C).
- Hu, Yanzhe & Kang, Shaozhong & Ding, Risheng & Zhao, Qing, 2021. "A crude protein and fiber model of alfalfa incorporating growth age under water and salt stress," Agricultural Water Management, Elsevier, vol. 255(C).
- Qiu, Rangjian & Song, Jinjuan & Du, Taisheng & Kang, Shaozhong & Tong, Ling & Chen, Renqiang & Wu, Laosheng, 2013. "Response of evapotranspiration and yield to planting density of solar greenhouse grown tomato in northwest China," Agricultural Water Management, Elsevier, vol. 130(C), pages 44-51.
- Patanè, C. & Cosentino, S.L., 2010. "Effects of soil water deficit on yield and quality of processing tomato under a Mediterranean climate," Agricultural Water Management, Elsevier, vol. 97(1), pages 131-138, January.
- Christian Henry & Grace P. John & Ruihua Pan & Megan K. Bartlett & Leila R. Fletcher & Christine Scoffoni & Lawren Sack, 2019. "A stomatal safety-efficiency trade-off constrains responses to leaf dehydration," Nature Communications, Nature, vol. 10(1), pages 1-9, December.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Xin, Lang & Tang, Maosong & Zhang, Lei & Huang, Weixiong & Wang, Xingpeng & Gao, Yang, 2024. "Effects of saline-fresh water rotation irrigation on photosynthetic characteristics and leaf ultrastructure of tomato plants in a greenhouse," Agricultural Water Management, Elsevier, vol. 292(C).
- Sun, Lei & Li, Bo & Yao, Mingze & Niu, Dongshuang & Gao, Manman & Mao, Lizhen & Xu, Zhanyang & Wang, Tieliang & Wang, Jingkuan, 2023. "Optimising water and nitrogen management for greenhouse tomatoes in Northeast China using EWM−TOPSIS−AISM model," Agricultural Water Management, Elsevier, vol. 290(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Yang, Hui & Du, Taisheng & Mao, Xiaomin & Ding, Risheng & Shukla, Manoj K., 2019. "A comprehensive method of evaluating the impact of drought and salt stress on tomato growth and fruit quality based on EPIC growth model," Agricultural Water Management, Elsevier, vol. 213(C), pages 116-127.
- Chen, Jinliang & Kang, Shaozhong & Du, Taisheng & Guo, Ping & Qiu, Rangjian & Chen, Renqiang & Gu, Feng, 2014. "Modeling relations of tomato yield and fruit quality with water deficit at different growth stages under greenhouse condition," Agricultural Water Management, Elsevier, vol. 146(C), pages 131-148.
- Wu, Zhuqing & Fan, Yaqiong & Qiu, Yuan & Hao, Xinmei & Li, Sien & Kang, Shaozhong, 2022. "Response of yield and quality of greenhouse tomatoes to water and salt stresses and biochar addition in Northwest China," Agricultural Water Management, Elsevier, vol. 270(C).
- Zhang, Huimeng & Xiong, Yunwu & Huang, Guanhua & Xu, Xu & Huang, Quanzhong, 2017. "Effects of water stress on processing tomatoes yield, quality and water use efficiency with plastic mulched drip irrigation in sandy soil of the Hetao Irrigation District," Agricultural Water Management, Elsevier, vol. 179(C), pages 205-214.
- Guo, Lijie & Cao, Hongxia & Helgason, Warren D. & Yang, Hui & Wu, Xuanyi & Li, Hongzheng, 2022. "Effect of drip-line layout and irrigation amount on yield, irrigation water use efficiency, and quality of short-season tomato in Northwest China," Agricultural Water Management, Elsevier, vol. 270(C).
- Rasool, Ghulam & Guo, Xiangping & Wang, Zhenchang & Ali, Muhammad Usman & Chen, Sheng & Zhang, Shuxuan & Wu, Qijin & Ullah, Muhammad Saif, 2020. "Coupling fertigation and buried straw layer improves fertilizer use efficiency, fruit yield, and quality of greenhouse tomato," Agricultural Water Management, Elsevier, vol. 239(C).
- Wang, Chenxia & Gu, Feng & Chen, Jinliang & Yang, Hui & Jiang, Jingjing & Du, Taisheng & Zhang, Jianhua, 2015. "Assessing the response of yield and comprehensive fruit quality of tomato grown in greenhouse to deficit irrigation and nitrogen application strategies," Agricultural Water Management, Elsevier, vol. 161(C), pages 9-19.
- Lu, Jia & Shao, Guangcheng & Cui, Jintao & Wang, Xiaojun & Keabetswe, Larona, 2019. "Yield, fruit quality and water use efficiency of tomato for processing under regulated deficit irrigation: A meta-analysis," Agricultural Water Management, Elsevier, vol. 222(C), pages 301-312.
- Yang, Hui & Du, Taisheng & Qiu, Rangjian & Chen, Jinliang & Wang, Feng & Li, Yang & Wang, Chenxia & Gao, Lihong & Kang, Shaozhong, 2017. "Improved water use efficiency and fruit quality of greenhouse crops under regulated deficit irrigation in northwest China," Agricultural Water Management, Elsevier, vol. 179(C), pages 193-204.
- Cantore, V. & Lechkar, O. & Karabulut, E. & Sellami, M.H. & Albrizio, R. & Boari, F. & Stellacci, A.M. & Todorovic, M., 2016. "Combined effect of deficit irrigation and strobilurin application on yield, fruit quality and water use efficiency of “cherry” tomato (Solanum lycopersicum L.)," Agricultural Water Management, Elsevier, vol. 167(C), pages 53-61.
- Gong, Xuewen & Qiu, Rangjian & Sun, Jingsheng & Ge, Jiankun & Li, Yanbin & Wang, Shunsheng, 2020. "Evapotranspiration and crop coefficient of tomato grown in a solar greenhouse under full and deficit irrigation," Agricultural Water Management, Elsevier, vol. 235(C).
- Kang, Jian & Hao, Xinmei & Zhou, Huiping & Ding, Risheng, 2021. "An integrated strategy for improving water use efficiency by understanding physiological mechanisms of crops responding to water deficit: Present and prospect," Agricultural Water Management, Elsevier, vol. 255(C).
- Baoying Shan & Ping Guo & Shanshan Guo & Zhong Li, 2019. "A Price-Forecast-Based Irrigation Scheduling Optimization Model under the Response of Fruit Quality and Price to Water," Sustainability, MDPI, vol. 11(7), pages 1-21, April.
- Li, Huanhuan & Liu, Hao & Gong, Xuewen & Li, Shuang & Pang, Jie & Chen, Zhifang & Sun, Jingsheng, 2021. "Optimizing irrigation and nitrogen management strategy to trade off yield, crop water productivity, nitrogen use efficiency and fruit quality of greenhouse grown tomato," Agricultural Water Management, Elsevier, vol. 245(C).
- Zhou, Huiping & Chen, Jinliang & Wang, Feng & Li, Xiaojuan & Génard, Michel & Kang, Shaozhong, 2020. "An integrated irrigation strategy for water-saving and quality-improving of cash crops: Theory and practice in China," Agricultural Water Management, Elsevier, vol. 241(C).
- Mahmoud S. Hashem & Wei Guo & Xuebin Qi & Ping Li, 2022. "Assessing the Effect of Irrigation with Reclaimed Water Using Different Irrigation Techniques on Tomatoes Quality Parameters," Sustainability, MDPI, vol. 14(5), pages 1-19, March.
- Liu, Hao & Li, Huanhuan & Ning, Huifeng & Zhang, Xiaoxian & Li, Shuang & Pang, Jie & Wang, Guangshuai & Sun, Jingsheng, 2019. "Optimizing irrigation frequency and amount to balance yield, fruit quality and water use efficiency of greenhouse tomato," Agricultural Water Management, Elsevier, vol. 226(C).
- Liu, Jie & Hu, Tiantian & Feng, Puyu & Yao, Delong & Gao, Fan & Hong, Xia, 2021. "Effect of potassium fertilization during fruit development on tomato quality, potassium uptake, water and potassium use efficiency under deficit irrigation regime," Agricultural Water Management, Elsevier, vol. 250(C).
- Li, Bo & Wim, Voogt & Shukla, Manoj Kumar & Du, Taisheng, 2021. "Drip irrigation provides a trade-off between yield and nutritional quality of tomato in the solar greenhouse," Agricultural Water Management, Elsevier, vol. 249(C).
- Lu, Jia & Shao, Guangcheng & Gao, Yang & Zhang, Kun & Wei, Qun & Cheng, Jifan, 2021. "Effects of water deficit combined with soil texture, soil bulk density and tomato variety on tomato fruit quality: A meta-analysis," Agricultural Water Management, Elsevier, vol. 243(C).
More about this item
Keywords
Environmental stress; Interactive effect; Solanum lycopersicum; Deficit irrigation; Quantitative relationship;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:277:y:2023:i:c:s0378377422006813. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.