IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v289y2023ics0378377423003621.html
   My bibliography  Save this article

Evaluating the differences in irrigation methods for winter wheat under limited irrigation quotas in the water-food-economy nexus in the North China Plain

Author

Listed:
  • Li, Pei
  • Ren, Li

Abstract

Quantitatively evaluating the effects of multiple factors on the performance levels of different irrigation methods under a limited water supply in the water-food-economy nexus at the regional scale is of great significance; such evaluations can facilitate the selection of appropriate irrigation methods and schemes to reduce the contradiction between the water shortage and grain production circumstances. In this study, the distributed SWAP-WOFOST (Soil-Water-Atmosphere-Plant-WOrld FOod STudy) model was applied to a typical area of severe deep groundwater overexploitation in the North China Plain. This model was used to simulate various scenarios of sprinkler irrigation (SI) and limited surface irrigation (LSI) under the three limited irrigation quotas (i.e., 75 mm, 150 mm and 225 mm) and to further quantify the differences in crop yield, evapotranspiration and water productivity (WP) between the two irrigation methods by considering three rainfall levels and 66 soil texture profile (STP) types. Then, the impacts of irrigation methods on farmers’ net income were analyzed; the increasing extents of SI implementation scale and workday wage to improve farmers’ net income were estimated according to irrigation, rainfall and soil conditions. Under a specific limited irrigation quota, the yield and WP of winter wheat under LSI were greater than those under SI without fertigation in more than 92% of the 66 STP types under the three rainfall levels, with yield differences mainly in the range of 200–1600 kg hm−2 and WP differences mainly in the range of 0–0.5 kg m−3. In no more than five STP types (e.g., sandy or loamy sandy soil in the five layers), the yield and WP under LSI were lower than those under SI. Relative to the evapotranspiration under LSI, the evapotranspiration under SI did not show the same trend, while the ratio of transpiration to evapotranspiration under SI decreased in more than 98% of the STP types. For different irrigation quotas and rainfall levels, the farmers’ net incomes under SI were 374–1517 yuan hm−2 greater than those under LSI for up to five STP types, and they were 0–3000 yuan hm−2 lower than those under LSI for the other 92% of the STP types. When labor could be saved by more than 8 d hm−2 by improving the implementation scale of SI and the workday wage could increase to more than 100 yuan d−1, SI was recommended to obtain higher farmers’ net income in more STP types in the study area.

Suggested Citation

  • Li, Pei & Ren, Li, 2023. "Evaluating the differences in irrigation methods for winter wheat under limited irrigation quotas in the water-food-economy nexus in the North China Plain," Agricultural Water Management, Elsevier, vol. 289(C).
  • Handle: RePEc:eee:agiwat:v:289:y:2023:i:c:s0378377423003621
    DOI: 10.1016/j.agwat.2023.108497
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377423003621
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2023.108497?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Inge E. M. Graaf & Tom Gleeson & L. P. H. (Rens) van Beek & Edwin H. Sutanudjaja & Marc F. P. Bierkens, 2019. "Environmental flow limits to global groundwater pumping," Nature, Nature, vol. 574(7776), pages 90-94, October.
    2. Zhang, Biao & Fu, Zetian & Wang, Jieqiong & Zhang, Lingxian, 2019. "Farmers’ adoption of water-saving irrigation technology alleviates water scarcity in metropolis suburbs: A case study of Beijing, China," Agricultural Water Management, Elsevier, vol. 212(C), pages 349-357.
    3. Li, Jinpeng & Zhang, Zhen & Liu, Yang & Yao, Chunsheng & Song, Wenyue & Xu, Xuexin & Zhang, Meng & Zhou, Xiaonan & Gao, Yanmei & Wang, Zhimin & Sun, Zhencai & Zhang, Yinghua, 2019. "Effects of micro-sprinkling with different irrigation amount on grain yield and water use efficiency of winter wheat in the North China Plain," Agricultural Water Management, Elsevier, vol. 224(C), pages 1-1.
    4. Droogers, P. & Bastiaanssen, W. G. M. & Beyazgul, M. & Kayam, Y. & Kite, G. W. & Murray-Rust, H., 2000. "Distributed agro-hydrological modeling of an irrigation system in western Turkey," Agricultural Water Management, Elsevier, vol. 43(2), pages 183-202, March.
    5. Zhao, Jie & Zhang, Xuepeng & Yang, Yadong & Zang, Huadong & Yan, Peng & Meki, Manyowa N. & Doro, Luca & Sui, Peng & Jeong, Jaehak & Zeng, Zhaohai, 2021. "Alternative cropping systems for groundwater irrigation sustainability in the North China Plain," Agricultural Water Management, Elsevier, vol. 250(C).
    6. M. Rodell & J. S. Famiglietti & D. N. Wiese & J. T. Reager & H. K. Beaudoing & F. W. Landerer & M.-H. Lo, 2018. "Emerging trends in global freshwater availability," Nature, Nature, vol. 557(7707), pages 651-659, May.
    7. Noory, H. & van der Zee, S.E.A.T.M. & Liaghat, A.-M. & Parsinejad, M. & van Dam, J.C., 2011. "Distributed agro-hydrological modeling with SWAP to improve water and salt management of the Voshmgir Irrigation and Drainage Network in Northern Iran," Agricultural Water Management, Elsevier, vol. 98(6), pages 1062-1070, April.
    8. Kumar Jha, Shiva & Ramatshaba, Tefo Steve & Wang, Guangshuai & Liang, Yueping & Liu, Hao & Gao, Yang & Duan, Aiwang, 2019. "Response of growth, yield and water use efficiency of winter wheat to different irrigation methods and scheduling in North China Plain," Agricultural Water Management, Elsevier, vol. 217(C), pages 292-302.
    9. Zou, Xiaoxia & Li, Yu’e & Cremades, Roger & Gao, Qingzhu & Wan, Yunfan & Qin, Xiaobo, 2013. "Cost-effectiveness analysis of water-saving irrigation technologies based on climate change response: A case study of China," Agricultural Water Management, Elsevier, vol. 129(C), pages 9-20.
    10. Xue, Jing & Ren, Li, 2016. "Evaluation of crop water productivity under sprinkler irrigation regime using a distributed agro-hydrological model in an irrigation district of China," Agricultural Water Management, Elsevier, vol. 178(C), pages 350-365.
    11. Huang, Qiuqiong & Wang, Jinxia & Li, Yumin, 2017. "Do water saving technologies save water? Empirical evidence from North China," Journal of Environmental Economics and Management, Elsevier, vol. 82(C), pages 1-16.
    12. Hashemy Shahdany, S. Mehdy & Firoozfar, Alireza & Maestre, J.M. & Mallakpour, Iman & Taghvaeian, Saleh & Karimi, Poolad, 2018. "Operational performance improvements in irrigation canals to overcome groundwater overexploitation," Agricultural Water Management, Elsevier, vol. 204(C), pages 234-246.
    13. Feng, Xuyu & Liu, Haijun & Feng, Dongxue & Tang, Xiaopei & Li, Lun & Chang, Jie & Tanny, Josef & Liu, Ronghao, 2023. "Quantifying winter wheat evapotranspiration and crop coefficients under sprinkler irrigation using eddy covariance technology in the North China Plain," Agricultural Water Management, Elsevier, vol. 277(C).
    14. Fang, Qin & Zhang, Xiying & Shao, Liwei & Chen, Suying & Sun, Hongyong, 2018. "Assessing the performance of different irrigation systems on winter wheat under limited water supply," Agricultural Water Management, Elsevier, vol. 196(C), pages 133-143.
    15. Carole Dalin & Yoshihide Wada & Thomas Kastner & Michael J. Puma, 2017. "Groundwater depletion embedded in international food trade," Nature, Nature, vol. 543(7647), pages 700-704, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Heinen, Marius & Mulder, Martin & van Dam, Jos & Bartholomeus, Ruud & de Jong van Lier, Quirijn & de Wit, Janine & de Wit, Allard & Hack - ten Broeke, Mirjam, 2024. "SWAP 50 years: Advances in modelling soil-water-atmosphere-plant interactions," Agricultural Water Management, Elsevier, vol. 298(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Xueliang & Ding, Beibei & Hou, Yonghao & Feng, Puyu & Liu, De Li & Srinivasan, Raghavan & Chen, Yong, 2024. "Assessing the feasibility of sprinkler irrigation schemes and their adaptation to future climate change in groundwater over-exploitation regions," Agricultural Water Management, Elsevier, vol. 292(C).
    2. Chunxiao Song & Yue Rong & Ruifeng Liu & Les Oxley & Hengyun Ma, 2022. "Testing the Effects of Water-Saving Technologies Adapted to Drought: Empirical Evidence from the Huang-Huai-Hai Region in China," Land, MDPI, vol. 11(12), pages 1-22, November.
    3. Gao, Fei & Sun, Shikun & Yao, Ning & Yang, Huicai & Cheng, Bingfen & Luan, Xiaobo & Wang, Kaixuan, 2022. "Identifying the impact of crop distribution on groundwater resources carrying capacity in groundwater-depended agricultural regions," Agricultural Water Management, Elsevier, vol. 264(C).
    4. Mi, Qiao & Li, Xiandong & Li, Xianmei & Yu, Guoxin & Gao, Jianzhong, 2021. "Cotton farmers' adaptation to arid climates: Waiting times to adopt water-saving technology," Agricultural Water Management, Elsevier, vol. 244(C).
    5. Yang, Danni & Li, Sien & Kang, Shaozhong & Du, Taisheng & Guo, Ping & Mao, Xiaomin & Tong, Ling & Hao, Xinmei & Ding, Risheng & Niu, Jun, 2020. "Effect of drip irrigation on wheat evapotranspiration, soil evaporation and transpiration in Northwest China," Agricultural Water Management, Elsevier, vol. 232(C).
    6. Bopp, Carlos & Jara-Rojas, Roberto & Bravo-Ureta, Boris & Engler, Alejandra, 2022. "Irrigation water use, shadow values and productivity: Evidence from stochastic production frontiers in vineyards," Agricultural Water Management, Elsevier, vol. 271(C).
    7. Liu, Yi & Zeng, Wenzhi & Ao, Chang & Lei, Guoqing & Wu, Jingwei & Huang, Jiesheng & Gaiser, Thomas & Srivastava, Amit Kumar, 2022. "Optimization of winter irrigation management for salinized farmland using a coupled model of soil water flow and crop growth," Agricultural Water Management, Elsevier, vol. 270(C).
    8. Wu, Hao & Xu, Min & Peng, Zhuoyue & Chen, Xiaoping, 2022. "Quantifying the potential impacts of meltwater on cotton yields in the Tarim River Basin, Central Asia," Agricultural Water Management, Elsevier, vol. 269(C).
    9. Firouzabadi, Ali Ghadami & Baghani, Javad & Jovzi, Mehdi & Albaji, Mohammad, 2021. "Effects of wheat row spacing layout and drip tape spacing on yield and water productivity in sandy clay loam soil in a semi-arid region," Agricultural Water Management, Elsevier, vol. 251(C).
    10. Yamini, Vaddula & Singh, Kulvir, 2024. "Emitter spacing, depth of lateral placement, and nutrient levels affect productivity of cotton-wheat cropping system under sub-surface drip fertigation," Agricultural Water Management, Elsevier, vol. 295(C).
    11. Xiaoli Shi & Wenjiao Shi & Na Dai & Minglei Wang, 2022. "Optimal Irrigation under the Constraint of Water Resources for Winter Wheat in the North China Plain," Agriculture, MDPI, vol. 12(12), pages 1-15, November.
    12. Feng, Xuyu & Liu, Haijun & Feng, Dongxue & Tang, Xiaopei & Li, Lun & Chang, Jie & Tanny, Josef & Liu, Ronghao, 2023. "Quantifying winter wheat evapotranspiration and crop coefficients under sprinkler irrigation using eddy covariance technology in the North China Plain," Agricultural Water Management, Elsevier, vol. 277(C).
    13. Zexi Shen & Qiang Zhang & Vijay P. Singh & Yadu Pokhrel & Jianping Li & Chong-Yu Xu & Wenhuan Wu, 2022. "Drying in the low-latitude Atlantic Ocean contributed to terrestrial water storage depletion across Eurasia," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    14. Ameneh Mianabadi & Hashem Derakhshan & Kamran Davary & Seyed Majid Hasheminia & Markus Hrachowitz, 2020. "A Novel Idea for Groundwater Resource Management during Megadrought Events," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(5), pages 1743-1755, March.
    15. Merhawi GebreEgziabher & Scott Jasechko & Debra Perrone, 2022. "Widespread and increased drilling of wells into fossil aquifers in the USA," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    16. Cai, Jinyang & Chen, Yiming & Hu, Ruifa & Wu, Mingyin & Shen, Zhiyang, 2022. "Discovering the impact of farmer field schools on the adoption of environmental-friendly technology," Technological Forecasting and Social Change, Elsevier, vol. 182(C).
    17. Shuhong Wang & Ning Yin & Zhihai Yang, 2021. "Factors affecting sustained adoption of irrigation water-saving technologies in groundwater over-exploited areas in the North China Plain," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(7), pages 10528-10546, July.
    18. Fu, Chong & Xue, Jing & Chen, Junfeng & Cui, Lihong & Wang, Hui, 2024. "Evaluating spatial and temporal variations of soil water, heat, and salt under autumn irrigation in the Hetao Irrigation District based on distributed SHAW model," Agricultural Water Management, Elsevier, vol. 293(C).
    19. Wang, Chong & Gao, Zhenzhen & Zhao, Jiongchao & Feng, Yupeng & Laraib, Iqra & Shang, Mengfei & Wang, Kaicheng & Chen, Fu & Chu, Qingquan, 2022. "Irrigation-induced hydrothermal variation affects greenhouse gas emissions and crop production," Agricultural Water Management, Elsevier, vol. 260(C).
    20. Si, Zhuanyun & Zain, Muhammad & Mehmood, Faisal & Wang, Guangshuai & Gao, Yang & Duan, Aiwang, 2020. "Effects of nitrogen application rate and irrigation regime on growth, yield, and water-nitrogen use efficiency of drip-irrigated winter wheat in the North China Plain," Agricultural Water Management, Elsevier, vol. 231(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:289:y:2023:i:c:s0378377423003621. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.