IDEAS home Printed from https://ideas.repec.org/a/bpj/jecome/v12y2023i1p85-103n1.html
   My bibliography  Save this article

On the Implementation of Approximate Randomization Tests in Linear Models with a Small Number of Clusters

Author

Listed:
  • Cai Yong

    (Department of Economics, Northwestern University, Evanston, USA)

  • Canay Ivan A.

    (Department of Economics, Northwestern University, Evanston, USA)

  • Kim Deborah

    (Department of Economics, Northwestern University, Evanston, USA)

  • Shaikh Azeem M.

    (Department of Economics, University of Chicago, Chicago, USA)

Abstract

This paper provides a user’s guide to the general theory of approximate randomization tests developed in Canay, Romano, and Shaikh (2017a. “Randomization Tests under an Approximate Symmetry Assumption.” Econometrica 85 (3): 1013–30) when specialized to linear regressions with clustered data. An important feature of the methodology is that it applies to settings in which the number of clusters is small – even as small as five. We provide a step-by-step algorithmic description of how to implement the test and construct confidence intervals for the parameter of interest. In doing so, we additionally present three novel results concerning the methodology: we show that the method admits an equivalent implementation based on weighted scores; we show the test and confidence intervals are invariant to whether the test statistic is studentized or not; and we prove convexity of the confidence intervals for scalar parameters. We also articulate the main requirements underlying the test, emphasizing in particular common pitfalls that researchers may encounter. Finally, we illustrate the use of the methodology with two applications that further illuminate these points: one to a linear regression with clustered data based on Meng, Qian, and Yared (2015. “The Institutional Causes of china’s Great Famine, 1959–1961.” The Review of Economic Studies 82 (4): 1568–611) and a second to a linear regression with temporally dependent data based on Munyo and Rossi (2015. “First-day Criminal Recidivism.” Journal of Public Economics 124: 81–90). The companion R and Stata packages facilitate the implementation of the methodology and the replication of the empirical exercises.

Suggested Citation

  • Cai Yong & Canay Ivan A. & Kim Deborah & Shaikh Azeem M., 2023. "On the Implementation of Approximate Randomization Tests in Linear Models with a Small Number of Clusters," Journal of Econometric Methods, De Gruyter, vol. 12(1), pages 85-103, January.
  • Handle: RePEc:bpj:jecome:v:12:y:2023:i:1:p:85-103:n:1
    DOI: 10.1515/jem-2021-0030
    as

    Download full text from publisher

    File URL: https://doi.org/10.1515/jem-2021-0030
    Download Restriction: For access to full text, subscription to the journal or payment for the individual article is required.

    File URL: https://libkey.io/10.1515/jem-2021-0030?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. A. Colin Cameron & Jonah B. Gelbach & Douglas L. Miller, 2008. "Bootstrap-Based Improvements for Inference with Clustered Errors," The Review of Economics and Statistics, MIT Press, vol. 90(3), pages 414-427, August.
    2. Timothy Conley & Silvia Gonçalves & Christian Hansen, 2018. "Inference with Dependent Data in Accounting and Finance Applications," Journal of Accounting Research, Wiley Blackwell, vol. 56(4), pages 1139-1203, September.
    3. Rustam Ibragimov & Ulrich K. Müller, 2016. "Inference with Few Heterogeneous Clusters," The Review of Economics and Statistics, MIT Press, vol. 98(1), pages 83-96, March.
    4. Ivan A Canay & Vishal Kamat, 2018. "Approximate Permutation Tests and Induced Order Statistics in the Regression Discontinuity Design," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 85(3), pages 1577-1608.
    5. Ivan A. Canay & Joseph P. Romano & Azeem M. Shaikh, 2017. "Randomization Tests Under an Approximate Symmetry Assumption," Econometrica, Econometric Society, vol. 85, pages 1013-1030, May.
    6. Munyo, Ignacio & Rossi, Martín A., 2015. "First-day criminal recidivism," Journal of Public Economics, Elsevier, vol. 124(C), pages 81-90.
    7. Marianne Bertrand & Esther Duflo & Sendhil Mullainathan, 2004. "How Much Should We Trust Differences-In-Differences Estimates?," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 119(1), pages 249-275.
    8. Ibragimov, Rustam & Müller, Ulrich K., 2010. "t-Statistic Based Correlation and Heterogeneity Robust Inference," Journal of Business & Economic Statistics, American Statistical Association, vol. 28(4), pages 453-468.
    9. DiCiccio, Cyrus J. & DiCiccio, Thomas J. & Romano, Joseph P., 2020. "Exact tests via multiple data splitting," Statistics & Probability Letters, Elsevier, vol. 166(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. MacKinnon, James G. & Nielsen, Morten Ørregaard & Webb, Matthew D., 2023. "Cluster-robust inference: A guide to empirical practice," Journal of Econometrics, Elsevier, vol. 232(2), pages 272-299.
    2. Heckman, James & Pinto, Rodrigo & Shaikh, Azeem M., 2024. "Dealing with imperfect randomization: Inference for the highscope perry preschool program," Journal of Econometrics, Elsevier, vol. 243(1).
    3. David M. Ritzwoller & Joseph P. Romano & Azeem M. Shaikh, 2024. "Randomization Inference: Theory and Applications," Papers 2406.09521, arXiv.org.
    4. Yong Cai, 2021. "Panel Data with Unknown Clusters," Papers 2106.05503, arXiv.org, revised Jan 2022.
    5. Michael P. Leung, 2023. "Network Cluster‐Robust Inference," Econometrica, Econometric Society, vol. 91(2), pages 641-667, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. MacKinnon, James G. & Nielsen, Morten Ørregaard & Webb, Matthew D., 2023. "Cluster-robust inference: A guide to empirical practice," Journal of Econometrics, Elsevier, vol. 232(2), pages 272-299.
    2. Hagemann, Andreas, 2019. "Placebo inference on treatment effects when the number of clusters is small," Journal of Econometrics, Elsevier, vol. 213(1), pages 190-209.
    3. Hansen, Bruce E. & Lee, Seojeong, 2019. "Asymptotic theory for clustered samples," Journal of Econometrics, Elsevier, vol. 210(2), pages 268-290.
    4. MacKinnon, James G. & Nielsen, Morten Ørregaard & Webb, Matthew D., 2023. "Testing for the appropriate level of clustering in linear regression models," Journal of Econometrics, Elsevier, vol. 235(2), pages 2027-2056.
    5. Ivan A. Canay & Andres Santos & Azeem M. Shaikh, 2018. "The wild bootstrap with a "small" number of "large" clusters," CeMMAP working papers CWP27/18, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    6. Hwang, Jungbin, 2021. "Simple and trustworthy cluster-robust GMM inference," Journal of Econometrics, Elsevier, vol. 222(2), pages 993-1023.
    7. Andreas Hagemann, 2023. "Inference on quantile processes with a finite number of clusters," Papers 2301.04687, arXiv.org, revised Jun 2023.
    8. Andreas Hagemann, 2020. "Inference with a single treated cluster," Papers 2010.04076, arXiv.org.
    9. Andreas Hagemann, 2019. "Permutation inference with a finite number of heterogeneous clusters," Papers 1907.01049, arXiv.org, revised Feb 2023.
    10. Michael P. Leung, 2023. "Network Cluster‐Robust Inference," Econometrica, Econometric Society, vol. 91(2), pages 641-667, March.
    11. Wang, Wenjie, 2021. "Wild Bootstrap for Instrumental Variables Regression with Weak Instruments and Few Clusters," MPRA Paper 106227, University Library of Munich, Germany.
    12. Bobonis, Gustavo J. & Stabile, Mark & Tovar, Leonardo, 2020. "Military training exercises, pollution, and their consequences for health," Journal of Health Economics, Elsevier, vol. 73(C).
    13. Michael P. Leung, 2022. "Dependence‐robust inference using resampled statistics," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(2), pages 270-285, March.
    14. Bruno Ferman, 2023. "Inference in difference‐in‐differences: How much should we trust in independent clusters?," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 38(3), pages 358-369, April.
    15. Roth, Jonathan & Sant’Anna, Pedro H.C. & Bilinski, Alyssa & Poe, John, 2023. "What’s trending in difference-in-differences? A synthesis of the recent econometrics literature," Journal of Econometrics, Elsevier, vol. 235(2), pages 2218-2244.
    16. Kojevnikov, Denis & Song, Kyungchul, 2023. "Some impossibility results for inference with cluster dependence with large clusters," Other publications TiSEM 80b8e4ed-54bc-4a34-883f-f, Tilburg University, School of Economics and Management.
    17. Wang, Wenjie & Zhang, Yichong, 2024. "Wild bootstrap inference for instrumental variables regressions with weak and few clusters," Journal of Econometrics, Elsevier, vol. 241(1).
    18. Yong Cai, 2021. "A Modified Randomization Test for the Level of Clustering," Papers 2105.01008, arXiv.org, revised Jan 2022.
    19. Yong Cai, 2021. "Some Finite Sample Properties of the Sign Test," Papers 2103.01412, arXiv.org, revised Feb 2024.
    20. Yong Cai, 2021. "Panel Data with Unknown Clusters," Papers 2106.05503, arXiv.org, revised Jan 2022.

    More about this item

    Keywords

    randomization tests; linear regression; clustered data; time series;
    All these keywords.

    JEL classification:

    • C12 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Hypothesis Testing: General
    • C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bpj:jecome:v:12:y:2023:i:1:p:85-103:n:1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Peter Golla (email available below). General contact details of provider: https://www.degruyter.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.