Some Finite Sample Properties of the Sign Test
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- A. Colin Cameron & Jonah B. Gelbach & Douglas L. Miller, 2008.
"Bootstrap-Based Improvements for Inference with Clustered Errors,"
The Review of Economics and Statistics, MIT Press, vol. 90(3), pages 414-427, August.
- Jonah B. Gelbach & Doug Miller & A. Colin Cameron, 2006. "Bootstrap-Based Improvements for Inference with Clustered Errors," Working Papers 128, University of California, Davis, Department of Economics.
- A. Colin Cameron & Jonah B. Gelbach & Douglas L. Miller, 2007. "Bootstrap-Based Improvements for Inference with Clustered Errors," NBER Technical Working Papers 0344, National Bureau of Economic Research, Inc.
- Susan Athey & Guido W. Imbens, 2017.
"The State of Applied Econometrics: Causality and Policy Evaluation,"
Journal of Economic Perspectives, American Economic Association, vol. 31(2), pages 3-32, Spring.
- Susan Athey & Guido Imbens, 2016. "The State of Applied Econometrics - Causality and Policy Evaluation," Papers 1607.00699, arXiv.org.
- Hansen, Bruce E. & Lee, Seojeong, 2019.
"Asymptotic theory for clustered samples,"
Journal of Econometrics, Elsevier, vol. 210(2), pages 268-290.
- Bruce E. Hansen & Seojeong Jay Lee, 2017. "Asymptotic Theory for Clustered Samples," Discussion Papers 2017-18, School of Economics, The University of New South Wales.
- Bruce E. Hansen & Seojeong Lee, 2019. "Asymptotic Theory for Clustered Samples," Papers 1902.01497, arXiv.org.
- Ivan A. Canay & Andres Santos & Azeem M. Shaikh, 2021.
"The Wild Bootstrap with a “Small” Number of “Large” Clusters,"
The Review of Economics and Statistics, MIT Press, vol. 103(2), pages 346-363, May.
- Ivan A. Canay & Andres Santos & Azeem M. Shaikh, 2018. "The wild bootstrap with a "small" number of "large" clusters," CeMMAP working papers CWP27/18, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Ivan A. Canay & Andres Santos & Azeem M. Shaikh, 2019. "The Wild Bootstrap with a Small Number of Large Clusters," CeMMAP working papers CWP40/19, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Uri Gneezy & John A. List & Jeffrey A. Livingston & Xiangdong Qin & Sally Sadoff & Yang Xu, 2019.
"Measuring Success in Education: The Role of Effort on the Test Itself,"
American Economic Review: Insights, American Economic Association, vol. 1(3), pages 291-308, December.
- Uri Gneezy & John List & Jeffrey Livingston & Xiangdong Qin & Sally Sadoff & Yang Xu, 2017. "Measuring success in education: the role of effort on the test itself," Framed Field Experiments 00614, The Field Experiments Website.
- Uri Gneezy & John A. List & Jeffrey A. Livingston & Sally Sadoff & Xiangdong Qin & Yang Xu, 2017. "Measuring Success in Education: The Role of Effort on the Test Itself," NBER Working Papers 24004, National Bureau of Economic Research, Inc.
- Ivan A. Canay & Joseph P. Romano & Azeem M. Shaikh, 2017. "Randomization Tests Under an Approximate Symmetry Assumption," Econometrica, Econometric Society, vol. 85, pages 1013-1030, May.
- Munyo, Ignacio & Rossi, Martín A., 2015.
"First-day criminal recidivism,"
Journal of Public Economics, Elsevier, vol. 124(C), pages 81-90.
- Martín Rossi & Ignacio Munyo, 2014. "First-Day Criminal Recidivism," Working Papers 113, Universidad de San Andres, Departamento de Economia, revised Sep 2014.
- Marianne Bertrand & Esther Duflo & Sendhil Mullainathan, 2004.
"How Much Should We Trust Differences-In-Differences Estimates?,"
The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 119(1), pages 249-275.
- Marianne Bertrand & Esther Duflo & Sendhil Mullainathan, 2002. "How Much Should We Trust Differences-in-Differences Estimates?," NBER Working Papers 8841, National Bureau of Economic Research, Inc.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Yong Cai, 2021. "A Modified Randomization Test for the Level of Clustering," Papers 2105.01008, arXiv.org, revised Jan 2022.
- MacKinnon, James G. & Nielsen, Morten Ørregaard & Webb, Matthew D., 2023.
"Cluster-robust inference: A guide to empirical practice,"
Journal of Econometrics, Elsevier, vol. 232(2), pages 272-299.
- Matthew D. Webb & James MacKinnon & Morten Nielsen, 2021. "Cluster–robust inference: A guide to empirical practice," Economics Virtual Symposium 2021 6, Stata Users Group.
- James MacKinnon & Morten Ørregaard Nielsen, 2022. "Cluster-Robust Inference: A Guide to Empirical Practice," CREATES Research Papers 2022-08, Department of Economics and Business Economics, Aarhus University.
- James G. MacKinnon & Morten {O}rregaard Nielsen & Matthew D. Webb, 2022. "Cluster-Robust Inference: A Guide to Empirical Practice," Papers 2205.03285, arXiv.org.
- James G. MacKinnon & Morten Ørregaard Nielsen & Matthew D. Webb, 2022. "Cluster-Robust Inference: A Guide to Empirical Practice," Working Paper 1456, Economics Department, Queen's University.
- Hwang, Jungbin, 2021. "Simple and trustworthy cluster-robust GMM inference," Journal of Econometrics, Elsevier, vol. 222(2), pages 993-1023.
- James G. MacKinnon & Matthew D. Webb, 2020. "When and How to Deal with Clustered Errors in Regression Models," Working Paper 1421, Economics Department, Queen's University.
- Cai Yong & Canay Ivan A. & Kim Deborah & Shaikh Azeem M., 2023.
"On the Implementation of Approximate Randomization Tests in Linear Models with a Small Number of Clusters,"
Journal of Econometric Methods, De Gruyter, vol. 12(1), pages 85-103, January.
- Yong Cai & Ivan A. Canay & Deborah Kim & Azeem M. Shaikh, 2021. "On the implementation of Approximate Randomization Tests in Linear Models with a Small Number of Clusters," Papers 2102.09058, arXiv.org, revised Mar 2022.
- Michael P. Leung, 2022.
"Dependence‐robust inference using resampled statistics,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(2), pages 270-285, March.
- Michael P. Leung, 2020. "Dependence-Robust Inference Using Resampled Statistics," Papers 2002.02097, arXiv.org, revised Aug 2021.
- Yong Cai, 2021. "Panel Data with Unknown Clusters," Papers 2106.05503, arXiv.org, revised Jan 2022.
- Kojevnikov, Denis & Song, Kyungchul, 2023. "Some impossibility results for inference with cluster dependence with large clusters," Journal of Econometrics, Elsevier, vol. 237(2).
- Luis Alvarez & Bruno Ferman, 2020. "Inference in Difference-in-Differences with Few Treated Units and Spatial Correlation," Papers 2006.16997, arXiv.org, revised Apr 2023.
- Hagemann, Andreas, 2019. "Placebo inference on treatment effects when the number of clusters is small," Journal of Econometrics, Elsevier, vol. 213(1), pages 190-209.
- Sviták, Jan & Tichem, Jan & Haasbeek, Stefan, 2021. "Price effects of search advertising restrictions," International Journal of Industrial Organization, Elsevier, vol. 77(C).
- Michael P. Leung, 2023.
"Network Cluster‐Robust Inference,"
Econometrica, Econometric Society, vol. 91(2), pages 641-667, March.
- Michael P. Leung, 2021. "Network Cluster-Robust Inference," Papers 2103.01470, arXiv.org, revised Feb 2023.
- Wang, Wenjie, 2021. "Wild Bootstrap for Instrumental Variables Regression with Weak Instruments and Few Clusters," MPRA Paper 106227, University Library of Munich, Germany.
- Hansen, Bruce E. & Lee, Seojeong, 2019.
"Asymptotic theory for clustered samples,"
Journal of Econometrics, Elsevier, vol. 210(2), pages 268-290.
- Bruce E. Hansen & Seojeong Jay Lee, 2017. "Asymptotic Theory for Clustered Samples," Discussion Papers 2017-18, School of Economics, The University of New South Wales.
- Bruce E. Hansen & Seojeong Lee, 2019. "Asymptotic Theory for Clustered Samples," Papers 1902.01497, arXiv.org.
- Bruno Ferman, 2023.
"Inference in difference‐in‐differences: How much should we trust in independent clusters?,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 38(3), pages 358-369, April.
- Bruno Ferman, 2019. "Inference in Difference-in-Differences: How Much Should We Trust in Independent Clusters?," Papers 1909.01782, arXiv.org, revised Sep 2022.
- Ferman, Bruno, 2019. "Inference in Differences-in-Differences: How Much Should We Trust in Independent Clusters?," MPRA Paper 93746, University Library of Munich, Germany.
- Roth, Jonathan & Sant’Anna, Pedro H.C. & Bilinski, Alyssa & Poe, John, 2023.
"What’s trending in difference-in-differences? A synthesis of the recent econometrics literature,"
Journal of Econometrics, Elsevier, vol. 235(2), pages 2218-2244.
- Jonathan Roth & Pedro H. C. Sant'Anna & Alyssa Bilinski & John Poe, 2022. "What's Trending in Difference-in-Differences? A Synthesis of the Recent Econometrics Literature," Papers 2201.01194, arXiv.org, revised Jan 2023.
- MacKinnon, James G. & Nielsen, Morten Ørregaard & Webb, Matthew D., 2023.
"Testing for the appropriate level of clustering in linear regression models,"
Journal of Econometrics, Elsevier, vol. 235(2), pages 2027-2056.
- James G. MacKinnon & Morten Ørregaard Nielsen & Matthew D. Webb, 2022. "Testing for the appropriate level of clustering in linear regression models," Working Paper 1428, Economics Department, Queen's University.
- James G. MacKinnon & Morten {O}rregaard Nielsen & Matthew D. Webb, 2023. "Testing for the appropriate level of clustering in linear regression models," Papers 2301.04522, arXiv.org, revised Mar 2023.
- Kojevnikov, Denis & Song, Kyungchul, 2023. "Some impossibility results for inference with cluster dependence with large clusters," Other publications TiSEM 80b8e4ed-54bc-4a34-883f-f, Tilburg University, School of Economics and Management.
- Wang, Wenjie & Zhang, Yichong, 2024. "Wild bootstrap inference for instrumental variables regressions with weak and few clusters," Journal of Econometrics, Elsevier, vol. 241(1).
- James G. MacKinnon & Morten {O}rregaard Nielsen & Matthew D. Webb, 2024.
"Cluster-robust jackknife and bootstrap inference for binary response models,"
Papers
2406.00650, arXiv.org.
- James G. MacKinnon & Morten Ørregaard Nielsen & Matthew D. Webb, 2024. "Cluster-Robust Jackknife and Bootstrap Inference for Binary Response Models," Working Paper 1515, Economics Department, Queen's University.
More about this item
NEP fields
This paper has been announced in the following NEP Reports:- NEP-ECM-2021-03-15 (Econometrics)
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2103.01412. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.