IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2502.03865.html
   My bibliography  Save this paper

Combining Clusters for the Approximate Randomization Test

Author

Listed:
  • Chun Pong Lau

Abstract

This paper develops procedures to combine clusters for the approximate randomization test proposed by Canay, Romano, and Shaikh (2017). Their test can be used to conduct inference with a small number of clusters and imposes weak requirements on the correlation structure. However, their test requires the target parameter to be identified within each cluster. A leading example where this requirement fails to hold is when a variable has no variation within clusters. For instance, this happens in difference-in-differences designs because the treatment variable equals zero in the control clusters. Under this scenario, combining control and treated clusters can solve the identification problem, and the test remains valid. However, there is an arbitrariness in how the clusters are combined. In this paper, I develop computationally efficient procedures to combine clusters when this identification requirement does not hold. Clusters are combined to maximize local asymptotic power. The simulation study and empirical application show that the procedures to combine clusters perform well in various settings.

Suggested Citation

  • Chun Pong Lau, 2025. "Combining Clusters for the Approximate Randomization Test," Papers 2502.03865, arXiv.org.
  • Handle: RePEc:arx:papers:2502.03865
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2502.03865
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Djogbenou, Antoine A. & MacKinnon, James G. & Nielsen, Morten Ørregaard, 2019. "Asymptotic theory and wild bootstrap inference with clustered errors," Journal of Econometrics, Elsevier, vol. 212(2), pages 393-412.
    2. Cai Yong & Canay Ivan A. & Kim Deborah & Shaikh Azeem M., 2023. "On the Implementation of Approximate Randomization Tests in Linear Models with a Small Number of Clusters," Journal of Econometric Methods, De Gruyter, vol. 12(1), pages 85-103, January.
    3. Marcella Alsan & Claudia Goldin, 2019. "Watersheds in Child Mortality: The Role of Effective Water and Sewerage Infrastructure, 1880–1920," Journal of Political Economy, University of Chicago Press, vol. 127(2), pages 586-638.
    4. S. Lin & B. W. Kernighan, 1973. "An Effective Heuristic Algorithm for the Traveling-Salesman Problem," Operations Research, INFORMS, vol. 21(2), pages 498-516, April.
    5. G. A. Croes, 1958. "A Method for Solving Traveling-Salesman Problems," Operations Research, INFORMS, vol. 6(6), pages 791-812, December.
    6. Vaart,A. W. van der, 2000. "Asymptotic Statistics," Cambridge Books, Cambridge University Press, number 9780521784504, January.
    7. A. Colin Cameron & Douglas L. Miller, 2015. "A Practitioner’s Guide to Cluster-Robust Inference," Journal of Human Resources, University of Wisconsin Press, vol. 50(2), pages 317-372.
    8. Sarena Goodman, 2016. "Learning from the Test: Raising Selective College Enrollment by Providing Information," The Review of Economics and Statistics, MIT Press, vol. 98(4), pages 671-684, October.
    9. Dana Burde & Leigh L. Linden, 2013. "Bringing Education to Afghan Girls: A Randomized Controlled Trial of Village-Based Schools," American Economic Journal: Applied Economics, American Economic Association, vol. 5(3), pages 27-40, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. MacKinnon, James G. & Nielsen, Morten Ørregaard & Webb, Matthew D., 2023. "Cluster-robust inference: A guide to empirical practice," Journal of Econometrics, Elsevier, vol. 232(2), pages 272-299.
    2. Ahmed Kheiri & Alina G. Dragomir & David Mueller & Joaquim Gromicho & Caroline Jagtenberg & Jelke J. Hoorn, 2019. "Tackling a VRP challenge to redistribute scarce equipment within time windows using metaheuristic algorithms," EURO Journal on Transportation and Logistics, Springer;EURO - The Association of European Operational Research Societies, vol. 8(5), pages 561-595, December.
    3. James G. MacKinnon & Morten Ørregaard Nielsen & Matthew D. Webb, 2023. "Fast and reliable jackknife and bootstrap methods for cluster‐robust inference," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 38(5), pages 671-694, August.
    4. R Torres-Velázquez & V Estivill-Castro, 2004. "Local search for Hamiltonian Path with applications to clustering visitation paths," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 55(7), pages 737-748, July.
    5. Wenjie Wang & Yichong Zhang, 2021. "Wild Bootstrap for Instrumental Variables Regressions with Weak and Few Clusters," Papers 2108.13707, arXiv.org, revised Jan 2024.
    6. James G. MacKinnon, 2019. "How cluster‐robust inference is changing applied econometrics," Canadian Journal of Economics/Revue canadienne d'économique, John Wiley & Sons, vol. 52(3), pages 851-881, August.
    7. Laurent Davezies & Xavier D'Haultfoeuille & Yannick Guyonvarch, 2018. "Asymptotic results under multiway clustering," Papers 1807.07925, arXiv.org, revised Aug 2018.
    8. Michael P. Leung, 2023. "Network Cluster‐Robust Inference," Econometrica, Econometric Society, vol. 91(2), pages 641-667, March.
    9. Yuya Sasaki & Yulong Wang, 2022. "Non-Robustness of the Cluster-Robust Inference: with a Proposal of a New Robust Method," Papers 2210.16991, arXiv.org, revised Jan 2025.
    10. Pan-Li Zhang & Xiao-Bo Sun & Ji-Quan Wang & Hao-Hao Song & Jin-Ling Bei & Hong-Yu Zhang, 2022. "The Discrete Carnivorous Plant Algorithm with Similarity Elimination Applied to the Traveling Salesman Problem," Mathematics, MDPI, vol. 10(18), pages 1-34, September.
    11. Ozgur, C. O. & Brown, J. R., 1995. "A two-stage traveling salesman procedure for the single machine sequence-dependent scheduling problem," Omega, Elsevier, vol. 23(2), pages 205-219, April.
    12. Dario Tortarolo & Guillermo Cruces & Gonzalo Vazquez-Bare, 2023. "Design of partial population experiments with an application to spillovers in tax compliance," IFS Working Papers W23/17, Institute for Fiscal Studies.
    13. Wang, Wenjie, 2021. "Wild Bootstrap for Instrumental Variables Regression with Weak Instruments and Few Clusters," MPRA Paper 106227, University Library of Munich, Germany.
    14. Hansen, Bruce E. & Lee, Seojeong, 2019. "Asymptotic theory for clustered samples," Journal of Econometrics, Elsevier, vol. 210(2), pages 268-290.
    15. Anderson, D. Mark & Charles, Kerwin Kofi & Rees, Daniel I. & Wang, Tianyi, 2021. "Water purification efforts and the black‐white infant mortality gap, 1906–1938," Journal of Urban Economics, Elsevier, vol. 122(C).
    16. Toke S. Aidt & Romola J. Davenport & Felix Gray, 2023. "New perspectives on the contribution of sanitary investments to mortality decline in English cities, 1845–1909," Economic History Review, Economic History Society, vol. 76(2), pages 624-660, May.
    17. MacKinnon, James G. & Nielsen, Morten Ørregaard & Webb, Matthew D., 2023. "Testing for the appropriate level of clustering in linear regression models," Journal of Econometrics, Elsevier, vol. 235(2), pages 2027-2056.
    18. Luc Muyldermans & Patrick Beullens & Dirk Cattrysse & Dirk Van Oudheusden, 2005. "Exploring Variants of 2-Opt and 3-Opt for the General Routing Problem," Operations Research, INFORMS, vol. 53(6), pages 982-995, December.
    19. Doko Tchatoka, Firmin & Wang, Wenjie, 2021. "Size-corrected Bootstrap Test after Pretesting for Exogeneity with Heteroskedastic or Clustered Data," MPRA Paper 110899, University Library of Munich, Germany.
    20. Guillermo Cruces & Dario Tortarolo & Gonzalo Vazquez-Bare, 2022. "Design of two-stage experiments with an application to spillovers in tax compliance," IFS Working Papers W22/32, Institute for Fiscal Studies.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2502.03865. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.