Inference on quantile processes with a finite number of clusters
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Parente Paulo M.D.C. & Santos Silva João M.C., 2016.
"Quantile Regression with Clustered Data,"
Journal of Econometric Methods, De Gruyter, vol. 5(1), pages 1-15, January.
- Paulo M.D.C. Parente & Joao M.C. Santos Silva, 2013. "Quantile regression with clustered data," Discussion Papers 1305, University of Exeter, Department of Economics.
- Parente, Paulo M D C & Santos Silva, Joao M C, 2013. "Quantile regression with clustered data," Economics Discussion Papers 8976, University of Essex, Department of Economics.
- MacKinnon, James G. & Nielsen, Morten Ørregaard & Webb, Matthew D., 2023.
"Cluster-robust inference: A guide to empirical practice,"
Journal of Econometrics, Elsevier, vol. 232(2), pages 272-299.
- Matthew D. Webb & James MacKinnon & Morten Nielsen, 2021. "Cluster–robust inference: A guide to empirical practice," Economics Virtual Symposium 2021 6, Stata Users Group.
- James G. MacKinnon & Morten {O}rregaard Nielsen & Matthew D. Webb, 2022. "Cluster-Robust Inference: A Guide to Empirical Practice," Papers 2205.03285, arXiv.org.
- James MacKinnon & Morten Ørregaard Nielsen, 2022. "Cluster-Robust Inference: A Guide to Empirical Practice," CREATES Research Papers 2022-08, Department of Economics and Business Economics, Aarhus University.
- James G. MacKinnon & Morten Ørregaard Nielsen & Matthew D. Webb, 2022. "Cluster-Robust Inference: A Guide to Empirical Practice," Working Paper 1456, Economics Department, Queen's University.
- Andreas Hagemann, 2017. "Cluster-Robust Bootstrap Inference in Quantile Regression Models," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(517), pages 446-456, January.
- Brantly Callaway & Tong Li, 2019.
"Quantile treatment effects in difference in differences models with panel data,"
Quantitative Economics, Econometric Society, vol. 10(4), pages 1579-1618, November.
- Brantly Callaway & Tong Li, 2017. "Quantile Treatment Effects in Difference in Differences Models with Panel Data," DETU Working Papers 1701, Department of Economics, Temple University.
- A. Colin Cameron & Douglas L. Miller, 2015. "A Practitioner’s Guide to Cluster-Robust Inference," Journal of Human Resources, University of Wisconsin Press, vol. 50(2), pages 317-372.
- Andreas Hagemann, 2019. "Permutation inference with a finite number of heterogeneous clusters," Papers 1907.01049, arXiv.org, revised Feb 2023.
- Rustam Ibragimov & Ulrich K. Müller, 2016. "Inference with Few Heterogeneous Clusters," The Review of Economics and Statistics, MIT Press, vol. 98(1), pages 83-96, March.
- Alan B. Krueger, 1999.
"Experimental Estimates of Education Production Functions,"
The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 114(2), pages 497-532.
- Alan B. Krueger, 1997. "Experimental Estimates of Education Production Functions," Working Papers 758, Princeton University, Department of Economics, Industrial Relations Section..
- Alan B. Krueger, 1997. "Experimental Estimates of Education Production Functions," NBER Working Papers 6051, National Bureau of Economic Research, Inc.
- Marianne Bertrand & Esther Duflo & Sendhil Mullainathan, 2004.
"How Much Should We Trust Differences-In-Differences Estimates?,"
The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 119(1), pages 249-275.
- Marianne Bertrand & Esther Duflo & Sendhil Mullainathan, 2002. "How Much Should We Trust Differences-in-Differences Estimates?," NBER Working Papers 8841, National Bureau of Economic Research, Inc.
- James G. MacKinnon & Matthew D. Webb, 2017.
"Wild Bootstrap Inference for Wildly Different Cluster Sizes,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 32(2), pages 233-254, March.
- James G. MacKinnon & Matthew D. Webb, 2015. "Wild Bootstrap Inference For Wildly Different Cluster Sizes," Working Paper 1314, Economics Department, Queen's University.
- Bryan S. Graham, 2008. "Identifying Social Interactions Through Conditional Variance Restrictions," Econometrica, Econometric Society, vol. 76(3), pages 643-660, May.
- Jungmo Yoon & Antonio F. Galvao, 2020. "Cluster robust covariance matrix estimation in panel quantile regression with individual fixed effects," Quantitative Economics, Econometric Society, vol. 11(2), pages 579-608, May.
- Ivan A. Canay & Joseph P. Romano & Azeem M. Shaikh, 2017. "Randomization Tests Under an Approximate Symmetry Assumption," Econometrica, Econometric Society, vol. 85, pages 1013-1030, May.
- Wang, Huixia & He, Xuming, 2007. "Detecting Differential Expressions in GeneChip Microarray Studies: A Quantile Approach," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 104-112, March.
- Koenker, Roger W & Bassett, Gilbert, Jr, 1978. "Regression Quantiles," Econometrica, Econometric Society, vol. 46(1), pages 33-50, January.
- Bester, C. Alan & Conley, Timothy G. & Hansen, Christian B., 2011. "Inference with dependent data using cluster covariance estimators," Journal of Econometrics, Elsevier, vol. 165(2), pages 137-151.
- Ibragimov, Rustam & Müller, Ulrich K., 2010. "t-Statistic Based Correlation and Heterogeneity Robust Inference," Journal of Business & Economic Statistics, American Statistical Association, vol. 28(4), pages 453-468.
- DiCiccio, Cyrus J. & DiCiccio, Thomas J. & Romano, Joseph P., 2020. "Exact tests via multiple data splitting," Statistics & Probability Letters, Elsevier, vol. 166(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- MacKinnon, James G. & Nielsen, Morten Ørregaard & Webb, Matthew D., 2023.
"Cluster-robust inference: A guide to empirical practice,"
Journal of Econometrics, Elsevier, vol. 232(2), pages 272-299.
- Matthew D. Webb & James MacKinnon & Morten Nielsen, 2021. "Cluster–robust inference: A guide to empirical practice," Economics Virtual Symposium 2021 6, Stata Users Group.
- James MacKinnon & Morten Ørregaard Nielsen, 2022. "Cluster-Robust Inference: A Guide to Empirical Practice," CREATES Research Papers 2022-08, Department of Economics and Business Economics, Aarhus University.
- James G. MacKinnon & Morten {O}rregaard Nielsen & Matthew D. Webb, 2022. "Cluster-Robust Inference: A Guide to Empirical Practice," Papers 2205.03285, arXiv.org.
- James G. MacKinnon & Morten Ørregaard Nielsen & Matthew D. Webb, 2022. "Cluster-Robust Inference: A Guide to Empirical Practice," Working Paper 1456, Economics Department, Queen's University.
- MacKinnon, James G. & Nielsen, Morten Ørregaard & Webb, Matthew D., 2023.
"Testing for the appropriate level of clustering in linear regression models,"
Journal of Econometrics, Elsevier, vol. 235(2), pages 2027-2056.
- James G. MacKinnon & Morten Ørregaard Nielsen & Matthew D. Webb, 2022. "Testing for the appropriate level of clustering in linear regression models," Working Paper 1428, Economics Department, Queen's University.
- James G. MacKinnon & Morten {O}rregaard Nielsen & Matthew D. Webb, 2023. "Testing for the appropriate level of clustering in linear regression models," Papers 2301.04522, arXiv.org, revised Mar 2023.
- Wang, Wenjie & Zhang, Yichong, 2024. "Wild bootstrap inference for instrumental variables regressions with weak and few clusters," Journal of Econometrics, Elsevier, vol. 241(1).
- Andreas Hagemann, 2017. "Cluster-Robust Bootstrap Inference in Quantile Regression Models," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(517), pages 446-456, January.
- Wang, Wenjie, 2021. "Wild Bootstrap for Instrumental Variables Regression with Weak Instruments and Few Clusters," MPRA Paper 106227, University Library of Munich, Germany.
- Hansen, Bruce E. & Lee, Seojeong, 2019.
"Asymptotic theory for clustered samples,"
Journal of Econometrics, Elsevier, vol. 210(2), pages 268-290.
- Bruce E. Hansen & Seojeong Jay Lee, 2017. "Asymptotic Theory for Clustered Samples," Discussion Papers 2017-18, School of Economics, The University of New South Wales.
- Bruce E. Hansen & Seojeong Lee, 2019. "Asymptotic Theory for Clustered Samples," Papers 1902.01497, arXiv.org.
- Matthew D. Webb, 2023.
"Reworking wild bootstrap‐based inference for clustered errors,"
Canadian Journal of Economics/Revue canadienne d'économique, John Wiley & Sons, vol. 56(3), pages 839-858, August.
- Matthew D. Webb, 2014. "Reworking Wild Bootstrap Based Inference For Clustered Errors," Working Paper 1315, Economics Department, Queen's University.
- Hwang, Jungbin, 2021. "Simple and trustworthy cluster-robust GMM inference," Journal of Econometrics, Elsevier, vol. 222(2), pages 993-1023.
- Andreas Hagemann, 2020. "Inference with a single treated cluster," Papers 2010.04076, arXiv.org.
- Andreas Hagemann, 2019. "Permutation inference with a finite number of heterogeneous clusters," Papers 1907.01049, arXiv.org, revised Feb 2023.
- Hagemann, Andreas, 2019. "Placebo inference on treatment effects when the number of clusters is small," Journal of Econometrics, Elsevier, vol. 213(1), pages 190-209.
- Bruno Ferman, 2023.
"Inference in difference‐in‐differences: How much should we trust in independent clusters?,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 38(3), pages 358-369, April.
- Bruno Ferman, 2019. "Inference in Difference-in-Differences: How Much Should We Trust in Independent Clusters?," Papers 1909.01782, arXiv.org, revised Sep 2022.
- Ferman, Bruno, 2019. "Inference in Differences-in-Differences: How Much Should We Trust in Independent Clusters?," MPRA Paper 93746, University Library of Munich, Germany.
- Ivan A. Canay & Andres Santos & Azeem M. Shaikh, 2018.
"The wild bootstrap with a "small" number of "large" clusters,"
CeMMAP working papers
CWP27/18, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Ivan A. Canay & Andres Santos & Azeem M. Shaikh, 2019. "The Wild Bootstrap with a Small Number of Large Clusters," CeMMAP working papers CWP40/19, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Cai Yong & Canay Ivan A. & Kim Deborah & Shaikh Azeem M., 2023.
"On the Implementation of Approximate Randomization Tests in Linear Models with a Small Number of Clusters,"
Journal of Econometric Methods, De Gruyter, vol. 12(1), pages 85-103, January.
- Yong Cai & Ivan A. Canay & Deborah Kim & Azeem M. Shaikh, 2021. "On the implementation of Approximate Randomization Tests in Linear Models with a Small Number of Clusters," Papers 2102.09058, arXiv.org, revised Mar 2022.
- Jungbin Hwang, 2017. "Simple and Trustworthy Cluster-Robust GMM Inference," Working papers 2017-19, University of Connecticut, Department of Economics, revised Aug 2020.
- Michael P. Leung, 2022.
"Dependence‐robust inference using resampled statistics,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(2), pages 270-285, March.
- Michael P. Leung, 2020. "Dependence-Robust Inference Using Resampled Statistics," Papers 2002.02097, arXiv.org, revised Aug 2021.
- Roth, Jonathan & Sant’Anna, Pedro H.C. & Bilinski, Alyssa & Poe, John, 2023.
"What’s trending in difference-in-differences? A synthesis of the recent econometrics literature,"
Journal of Econometrics, Elsevier, vol. 235(2), pages 2218-2244.
- Jonathan Roth & Pedro H. C. Sant'Anna & Alyssa Bilinski & John Poe, 2022. "What's Trending in Difference-in-Differences? A Synthesis of the Recent Econometrics Literature," Papers 2201.01194, arXiv.org, revised Jan 2023.
- Kojevnikov, Denis & Song, Kyungchul, 2023. "Some impossibility results for inference with cluster dependence with large clusters," Other publications TiSEM 80b8e4ed-54bc-4a34-883f-f, Tilburg University, School of Economics and Management.
- Jungmo Yoon & Antonio F. Galvao, 2020. "Cluster robust covariance matrix estimation in panel quantile regression with individual fixed effects," Quantitative Economics, Econometric Society, vol. 11(2), pages 579-608, May.
- James G. MacKinnon & Matthew D. Webb, 2017. "Pitfalls When Estimating Treatment Effects Using Clustered Data," Working Paper 1387, Economics Department, Queen's University.
More about this item
NEP fields
This paper has been announced in the following NEP Reports:- NEP-ECM-2023-02-20 (Econometrics)
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2301.04687. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.