IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v166y2020ics0167715220301681.html
   My bibliography  Save this article

Exact tests via multiple data splitting

Author

Listed:
  • DiCiccio, Cyrus J.
  • DiCiccio, Thomas J.
  • Romano, Joseph P.

Abstract

Methods for the construction of hypothesis tests based on multiple data splitting are presented. The tests combine p-values, and exhibit overall Type 1 error control. But, it is also shown that multiple data splitting may have worse power than single splitting.

Suggested Citation

  • DiCiccio, Cyrus J. & DiCiccio, Thomas J. & Romano, Joseph P., 2020. "Exact tests via multiple data splitting," Statistics & Probability Letters, Elsevier, vol. 166(C).
  • Handle: RePEc:eee:stapro:v:166:y:2020:i:c:s0167715220301681
    DOI: 10.1016/j.spl.2020.108865
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167715220301681
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.spl.2020.108865?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Vladimir Vovk & Ruodu Wang, 0. "Combining p-values via averaging," Biometrika, Biometrika Trust, vol. 107(4), pages 791-808.
    2. Meinshausen, Nicolai & Meier, Lukas & Bühlmann, Peter, 2009. "p-Values for High-Dimensional Regression," Journal of the American Statistical Association, American Statistical Association, vol. 104(488), pages 1671-1681.
    3. Rubin Daniel & Dudoit Sandrine & van der Laan Mark, 2006. "A Method to Increase the Power of Multiple Testing Procedures Through Sample Splitting," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 5(1), pages 1-20, August.
    4. Jianqing Fan & Jinchi Lv, 2008. "Sure independence screening for ultrahigh dimensional feature space," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 70(5), pages 849-911, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Cai Yong & Canay Ivan A. & Kim Deborah & Shaikh Azeem M., 2023. "On the Implementation of Approximate Randomization Tests in Linear Models with a Small Number of Clusters," Journal of Econometric Methods, De Gruyter, vol. 12(1), pages 85-103, January.
    2. D García Rasines & G A Young, 2023. "Splitting strategies for post-selection inference," Biometrika, Biometrika Trust, vol. 110(3), pages 597-614.
    3. Brice Ozenne & Esben Budtz-Jørgensen & Sebastian Elgaard Ebert, 2023. "Controlling the familywise error rate when performing multiple comparisons in a linear latent variable model," Computational Statistics, Springer, vol. 38(1), pages 1-23, March.
    4. Andreas Hagemann, 2023. "Inference on quantile processes with a finite number of clusters," Papers 2301.04687, arXiv.org, revised Jun 2023.
    5. Solari, Aldo & Djordjilović, Vera, 2022. "Multi split conformal prediction," Statistics & Probability Letters, Elsevier, vol. 184(C).
    6. Choi, Woohyun & Kim, Ilmun, 2023. "Averaging p-values under exchangeability," Statistics & Probability Letters, Elsevier, vol. 194(C).
    7. David M. Ritzwoller & Joseph P. Romano, 2023. "Reproducible Aggregation of Sample-Split Statistics," Papers 2311.14204, arXiv.org, revised Dec 2023.
    8. Jelle J Goeman & Aldo Solari, 2024. "On selection and conditioning in multiple testing and selective inference," Biometrika, Biometrika Trust, vol. 111(2), pages 393-416.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shi, Chengchun & Li, Lexin, 2022. "Testing mediation effects using logic of Boolean matrices," LSE Research Online Documents on Economics 108881, London School of Economics and Political Science, LSE Library.
    2. Peter Bühlmann & Jacopo Mandozzi, 2014. "High-dimensional variable screening and bias in subsequent inference, with an empirical comparison," Computational Statistics, Springer, vol. 29(3), pages 407-430, June.
    3. Ian W. McKeague & Min Qian, 2015. "An Adaptive Resampling Test for Detecting the Presence of Significant Predictors," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(512), pages 1422-1433, December.
    4. The Tien Mai, 2023. "Reliable Genetic Correlation Estimation via Multiple Sample Splitting and Smoothing," Mathematics, MDPI, vol. 11(9), pages 1-13, May.
    5. Qing Zhou & Seunghyun Min, 2017. "Uncertainty quantification under group sparsity," Biometrika, Biometrika Trust, vol. 104(3), pages 613-632.
    6. Gabriel E Hoffman & Benjamin A Logsdon & Jason G Mezey, 2013. "PUMA: A Unified Framework for Penalized Multiple Regression Analysis of GWAS Data," PLOS Computational Biology, Public Library of Science, vol. 9(6), pages 1-19, June.
    7. Nicolai Meinshausen & Peter Bühlmann, 2010. "Stability selection," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 72(4), pages 417-473, September.
    8. Xiaoyi Zhu & Yuhong Yang, 2015. "Variable selection after screening: with or without data splitting?," Computational Statistics, Springer, vol. 30(1), pages 191-203, March.
    9. Feng Zou & Hengjian Cui, 2020. "Error density estimation in high-dimensional sparse linear model," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 72(2), pages 427-449, April.
    10. He Kevin & Zhou Xiang & Jiang Hui & Wen Xiaoquan & Li Yi, 2018. "False discovery control for penalized variable selections with high-dimensional covariates," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 17(6), pages 1-11, December.
    11. Zhang, Yaowu & Zhou, Yeqing & Zhu, Liping, 2024. "A post-screening diagnostic study for ultrahigh dimensional data," Journal of Econometrics, Elsevier, vol. 239(2).
    12. Xu, Yang & Zhao, Shishun & Hu, Tao & Sun, Jianguo, 2021. "Variable selection for generalized odds rate mixture cure models with interval-censored failure time data," Computational Statistics & Data Analysis, Elsevier, vol. 156(C).
    13. Shuichi Kawano, 2014. "Selection of tuning parameters in bridge regression models via Bayesian information criterion," Statistical Papers, Springer, vol. 55(4), pages 1207-1223, November.
    14. Shi, Chengchun & Zhou, Yunzhe & Li, Lexin, 2023. "Testing directed acyclic graph via structural, supervised and generative adversarial learning," LSE Research Online Documents on Economics 119446, London School of Economics and Political Science, LSE Library.
    15. Sauvenier, Mathieu & Van Bellegem, Sébastien, 2023. "Direction Identification and Minimax Estimation by Generalized Eigenvalue Problem in High Dimensional Sparse Regression," LIDAM Discussion Papers CORE 2023005, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    16. Ahmed Ismaïl & Hartikainen Anna-Liisa & Järvelin Marjo-Riitta & Richardson Sylvia, 2011. "False Discovery Rate Estimation for Stability Selection: Application to Genome-Wide Association Studies," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 10(1), pages 1-20, November.
    17. Shan Luo & Zehua Chen, 2014. "Sequential Lasso Cum EBIC for Feature Selection With Ultra-High Dimensional Feature Space," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 109(507), pages 1229-1240, September.
    18. Shi Chen & Wolfgang Karl Hardle & Brenda L'opez Cabrera, 2020. "Regularization Approach for Network Modeling of German Power Derivative Market," Papers 2009.09739, arXiv.org.
    19. Wang, Christina Dan & Chen, Zhao & Lian, Yimin & Chen, Min, 2022. "Asset selection based on high frequency Sharpe ratio," Journal of Econometrics, Elsevier, vol. 227(1), pages 168-188.
    20. Laurent Ferrara & Anna Simoni, 2023. "When are Google Data Useful to Nowcast GDP? An Approach via Preselection and Shrinkage," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 41(4), pages 1188-1202, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:166:y:2020:i:c:s0167715220301681. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.