IDEAS home Printed from https://ideas.repec.org/a/bla/jorssc/v52y2003i4p499-509.html
   My bibliography  Save this article

Modelling heterogeneous space–time occurrences of earthquakes and its residual analysis

Author

Listed:
  • Yosihiko Ogata
  • Koichi Katsura
  • Masaharu Tanemura

Abstract

Summary. Earthquake intensities are modelled as a function of previous activity whose specific form is based on established empirical laws in seismology, but whose parameter values can vary from place to place. This model is used for characterizing regional features of seismic activities in and around Japan, and also for exploring regions where the actual seismicity rate systematically deviates from that of the modelled rate.

Suggested Citation

  • Yosihiko Ogata & Koichi Katsura & Masaharu Tanemura, 2003. "Modelling heterogeneous space–time occurrences of earthquakes and its residual analysis," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 52(4), pages 499-509, October.
  • Handle: RePEc:bla:jorssc:v:52:y:2003:i:4:p:499-509
    DOI: 10.1111/1467-9876.00420
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/1467-9876.00420
    Download Restriction: no

    File URL: https://libkey.io/10.1111/1467-9876.00420?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Yosihiko Ogata & Koichi Katsura, 1988. "Likelihood analysis of spatial inhomogeneity for marked point patterns," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 40(1), pages 29-39, March.
    2. Yosihiko Ogata & Koichi Katsura & Niels Keiding & Claus Holst & Anders Green, 2000. "Empirical Bayes Age–Period–Cohort Analysis of Retrospective Incidence Data," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 27(3), pages 415-432, September.
    3. Yosihiko Ogata, 1990. "A Monte Carlo method for an objective Bayesian procedure," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 42(3), pages 403-433, September.
    4. F. Musmeci & D. Vere-Jones, 1992. "A space-time clustering model for historical earthquakes," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 44(1), pages 1-11, March.
    5. Yosihiko Ogata, 1998. "Space-Time Point-Process Models for Earthquake Occurrences," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 50(2), pages 379-402, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chenlong Li & Zhanjie Song & Wenjun Wang, 2020. "Space–time inhomogeneous background intensity estimators for semi-parametric space–time self-exciting point process models," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 72(4), pages 945-967, August.
    2. Giada Adelfio & Marcello Chiodi, 2021. "Including covariates in a space-time point process with application to seismicity," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 30(3), pages 947-971, September.
    3. Giada Adelfio & Yosihiko Ogata, 2010. "Hybrid kernel estimates of space–time earthquake occurrence rates using the epidemic-type aftershock sequence model," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 62(1), pages 127-143, February.
    4. Ute Hahn & Eva B. Vedel Jensen, 2016. "Hidden Second-order Stationary Spatial Point Processes," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 43(2), pages 455-475, June.
    5. Frederic Paik Schoenberg & Marc Hoffmann & Ryan J. Harrigan, 2019. "A recursive point process model for infectious diseases," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 71(5), pages 1271-1287, October.
    6. Eckardt, Matthias & González, Jonatan A. & Mateu, Jorge, 2021. "Graphical modelling and partial characteristics for multitype and multivariate-marked spatio-temporal point processes," Computational Statistics & Data Analysis, Elsevier, vol. 156(C).
    7. A. Baddeley & J. Møller & A. Pakes, 2008. "Properties of residuals for spatial point processes," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 60(3), pages 627-649, September.
    8. Bent Natvig & Ingunn Fride Tvete, 2007. "Bayesian Hierarchical Space–time Modeling of Earthquake Data," Methodology and Computing in Applied Probability, Springer, vol. 9(1), pages 89-114, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hainaut, Donatien, 2021. "Moment generating function of non-Markov self-excited claims processes," Insurance: Mathematics and Economics, Elsevier, vol. 101(PB), pages 406-424.
    2. Ketelbuters, John John & Hainaut, Donatien, 2021. "Time-Consistent Evaluation of Credit Risk with Contagion," LIDAM Discussion Papers ISBA 2021004, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    3. Hainaut, Donatien, 2019. "Fractional Hawkes processes," LIDAM Discussion Papers ISBA 2019016, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    4. Hainaut, Donatien, 2021. "Moment generating function of non-Markov self-excited claims processes," LIDAM Discussion Papers ISBA 2021028, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    5. Nicoletta D’Angelo & Marianna Siino & Antonino D’Alessandro & Giada Adelfio, 2022. "Local spatial log-Gaussian Cox processes for seismic data," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 106(4), pages 633-671, December.
    6. Weijin Xu & Jian Wu & Mengtan Gao, 2023. "Temporal distribution model and occurrence probability of M ≥ 6.5 earthquakes in North China Seismic Zone," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 119(1), pages 125-141, October.
    7. D. Gospodinov & V. Karakostas & E. Papadimitriou, 2015. "Seismicity rate modeling for prospective stochastic forecasting: the case of 2014 Kefalonia, Greece, seismic excitation," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 79(2), pages 1039-1058, November.
    8. Vincenzo Convertito & Hossein Ebrahimian & Ortensia Amoroso & Fatemeh Jalayer & Raffaella De Matteis & Paolo Capuano, 2021. "Time-Dependent Seismic Hazard Analysis for Induced Seismicity: The Case of St Gallen (Switzerland), Geothermal Field," Energies, MDPI, vol. 14(10), pages 1-17, May.
    9. Huang, Lorick & Khabou, Mahmoud, 2023. "Nonlinear Poisson autoregression and nonlinear Hawkes processes," Stochastic Processes and their Applications, Elsevier, vol. 161(C), pages 201-241.
    10. Steffen Volkenand & Günther Filler & Martin Odening, 2020. "Price Discovery and Market Reflexivity in Agricultural Futures Contracts with Different Maturities," Risks, MDPI, vol. 8(3), pages 1-17, July.
    11. Dewei Wang & Chendi Jiang & Chanseok Park, 2019. "Reliability analysis of load-sharing systems with memory," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 25(2), pages 341-360, April.
    12. Sumanta Pasari & Onkar Dikshit, 2018. "Stochastic earthquake interevent time modeling from exponentiated Weibull distributions," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 90(2), pages 823-842, January.
    13. Roba Bairakdar & Debbie Dupuis & Melina Mailhot, 2024. "Deviance Voronoi Residuals for Space-Time Point Process Models: An Application to Earthquake Insurance Risk," Papers 2410.04369, arXiv.org.
    14. Jamie Olson & Kathleen Carley, 2013. "Exact and approximate EM estimation of mutually exciting hawkes processes," Statistical Inference for Stochastic Processes, Springer, vol. 16(1), pages 63-80, April.
    15. Kuroda, Kaori & Hashiguchi, Hiroki & Fujiwara, Kantaro & Ikeguchi, Tohru, 2014. "Reconstruction of network structures from marked point processes using multi-dimensional scaling," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 415(C), pages 194-204.
    16. van den Hengel, G. & Franses, Ph.H.B.F., 2018. "Forecasting social conflicts in Africa using an Epidemic Type Aftershock Sequence model," Econometric Institute Research Papers EI2018-31, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    17. Kirchner, Matthias & Torrisi, Giovanni Luca, 2023. "Fluctuations and precise deviations of cumulative INAR time series," Stochastic Processes and their Applications, Elsevier, vol. 164(C), pages 1-32.
    18. Naveed Chehrazi & Thomas A. Weber, 2015. "Dynamic Valuation of Delinquent Credit-Card Accounts," Management Science, INFORMS, vol. 61(12), pages 3077-3096, December.
    19. Giada Adelfio & Marcello Chiodi, 2021. "Including covariates in a space-time point process with application to seismicity," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 30(3), pages 947-971, September.
    20. Chenlong Li & Zhanjie Song & Wenjun Wang, 2020. "Space–time inhomogeneous background intensity estimators for semi-parametric space–time self-exciting point process models," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 72(4), pages 945-967, August.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jorssc:v:52:y:2003:i:4:p:499-509. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/rssssea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.