Computing confidence intervals for log-concave densities
Author
Abstract
Suggested Citation
DOI: 10.1016/j.csda.2014.01.020
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Moulinath Banerjee & Jon A. Wellner, 2005. "Confidence Intervals for Current Status Data," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 32(3), pages 405-424, September.
- Madeleine Cule & Richard Samworth & Michael Stewart, 2010. "Maximum likelihood estimation of a multi‐dimensional log‐concave density," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 72(5), pages 545-607, November.
- Piet Groeneboom & Geurt Jongbloed & Jon A. Wellner, 2008. "The Support Reduction Algorithm for Computing Non‐Parametric Function Estimates in Mixture Models," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 35(3), pages 385-399, September.
- Dümbgen, Lutz & Rufibach, Kaspar, 2011. "logcondens: Computations Related to Univariate Log-Concave Density Estimation," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 39(i06).
- Walther G., 2002. "Detecting the Presence of Mixing with Multiscale Maximum Likelihood," Journal of the American Statistical Association, American Statistical Association, vol. 97, pages 508-513, June.
- Chang, George T. & Walther, Guenther, 2007. "Clustering with mixtures of log-concave distributions," Computational Statistics & Data Analysis, Elsevier, vol. 51(12), pages 6242-6251, August.
- Duong, Tarn, 2007. "ks: Kernel Density Estimation and Kernel Discriminant Analysis for Multivariate Data in R," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 21(i07).
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Dümbgen, Lutz & Wellner, Jon A. & Wolff, Malcolm, 2016. "A law of the iterated logarithm for Grenander’s estimator," Stochastic Processes and their Applications, Elsevier, vol. 126(12), pages 3854-3864.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Dümbgen, Lutz & Mösching, Alexandre & Strähl, Christof, 2021. "Active set algorithms for estimating shape-constrained density ratios," Computational Statistics & Data Analysis, Elsevier, vol. 163(C).
- Durot, Cécile & Huet, Sylvie & Koladjo, François & Robin, Stéphane, 2013. "Least-squares estimation of a convex discrete distribution," Computational Statistics & Data Analysis, Elsevier, vol. 67(C), pages 282-298.
- Madeleine Cule & Richard Samworth & Michael Stewart, 2010. "Maximum likelihood estimation of a multi‐dimensional log‐concave density," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 72(5), pages 545-607, November.
- Feng, Oliver Y. & Chen, Yining & Han, Qiyang & Carroll, Raymond J & Samworth, Richard J., 2022. "Nonparametric, tuning-free estimation of S-shaped functions," LSE Research Online Documents on Economics 111889, London School of Economics and Political Science, LSE Library.
- Balabdaoui, Fadoua & Kulagina, Yulia, 2020. "Completely monotone distributions: Mixing, approximation and estimation of number of species," Computational Statistics & Data Analysis, Elsevier, vol. 150(C).
- Hazelton, Martin L., 2011. "Assessing log-concavity of multivariate densities," Statistics & Probability Letters, Elsevier, vol. 81(1), pages 121-125, January.
- Hu, Hao & Yao, Weixin & Wu, Yichao, 2017. "The robust EM-type algorithms for log-concave mixtures of regression models," Computational Statistics & Data Analysis, Elsevier, vol. 111(C), pages 14-26.
- Hu, Hao & Wu, Yichao & Yao, Weixin, 2016. "Maximum likelihood estimation of the mixture of log-concave densities," Computational Statistics & Data Analysis, Elsevier, vol. 101(C), pages 137-147.
- Yining Chen & Richard J. Samworth, 2016. "Generalized additive and index models with shape constraints," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 78(4), pages 729-754, September.
- Suqin Ge & João Macieira, 2024.
"Unobserved Worker Quality and Inter‐Industry Wage Differentials,"
Journal of Industrial Economics, Wiley Blackwell, vol. 72(1), pages 459-515, March.
- Ge, Suqin & Macieira, João, 2020. "Unobserved Worker Quality and Inter-Industry Wage Differentials," GLO Discussion Paper Series 491, Global Labor Organization (GLO).
- Mu, Xiaosheng, 2015. "Log-concavity of a mixture of beta distributions," Statistics & Probability Letters, Elsevier, vol. 99(C), pages 125-130.
- Battey, Heather & Linton, Oliver, 2014.
"Nonparametric estimation of multivariate elliptic densities via finite mixture sieves,"
Journal of Multivariate Analysis, Elsevier, vol. 123(C), pages 43-67.
- Heather Battey & Oliver Linton, 2013. "Nonparametric estimation of multivariate elliptic densities via finite mixture sieves," CeMMAP working papers CWP15/13, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Heather Battey & Oliver Linton, 2013. "Nonparametric estimation of multivariate elliptic densities via finite mixture sieves," CeMMAP working papers CWP41/13, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- repec:jss:jstsof:36:i02 is not listed on IDEAS
- Yining Chen, 2015. "Semiparametric Time Series Models with Log-concave Innovations: Maximum Likelihood Estimation and its Consistency," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 42(1), pages 1-31, March.
- R. C. Rodríguez-Caro & E. Graciá & S. P. Blomberg & H. Cayuela & M. Grace & C. P. Carmona & H. A. Pérez-Mendoza & A. Giménez & R. Salguero-Gómez, 2023. "Anthropogenic impacts on threatened species erode functional diversity in chelonians and crocodilians," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
- Elina Robeva & Bernd Sturmfels & Ngoc Tran & Caroline Uhler, 2021. "Maximum likelihood estimation for totally positive log‐concave densities," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 48(3), pages 817-844, September.
- Pramita Bagchi & Subhra Sankar Dhar, 2020. "A study on the least squares estimator of multivariate isotonic regression function," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 47(4), pages 1192-1221, December.
- Chang, George T. & Walther, Guenther, 2007. "Clustering with mixtures of log-concave distributions," Computational Statistics & Data Analysis, Elsevier, vol. 51(12), pages 6242-6251, August.
- Guillermo Basulto-Elias & Alicia L. Carriquiry & Kris Brabanter & Daniel J. Nordman, 2021. "Bivariate Kernel Deconvolution with Panel Data," Sankhya B: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 83(1), pages 122-151, May.
- Karim M Abadir & Michel Lubrano, 2024. "Explicit solutions for the asymptotically optimal bandwidth in cross-validation," Post-Print hal-04678541, HAL.
- Rufibach Kaspar, 2012. "A Smooth ROC Curve Estimator Based on Log-Concave Density Estimates," The International Journal of Biostatistics, De Gruyter, vol. 8(1), pages 1-29, April.
More about this item
Keywords
Nonparametric density estimation; Log-concave; Maximum likelihood; Confidence interval;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:75:y:2014:i:c:p:248-264. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.